精英家教网 > 高中数学 > 题目详情
设各项均为正数的数列{an}的前n项和为Sn,满足,且a2,a5,a14构成等比数列.
(1)证明:
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
【答案】分析:(1)对于,令n=1即可证明;
(2)利用,且,(n≥2),两式相减即可求出通项公式.
(3)由(2)可得=.利用“裂项求和”即可证明.
解答:解:(1)当n=1时,

(2)当n≥2时,满足,且


∵an>0,∴an+1=an+2,
∴当n≥2时,{an}是公差d=2的等差数列.
∵a2,a5,a14构成等比数列,∴,解得a2=3,
由(1)可知,,∴a1=1∵a2-a1=3-1=2,
∴{an}是首项a1=1,公差d=2的等差数列.
∴数列{an}的通项公式an=2n-1.
(3)由(2)可得式=


点评:熟练掌握等差数列与等比数列的通项公式、“裂项求和”、通项与前n项和的关系an=Sn-Sn-1(n≥2)是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}和{bn}满足5an5bn5an+1成等比数列,lgbn,lgan+1,lgbn+1成等差数列,且a1=1,b1=2,a2=3,求通项an、bn

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{
Sn
}
是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{
Sn
}
是公差为d的等差数列.
(Ⅰ)求数列{an}的通项公式(用n,d表示);
(Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=
a
2
n+1
-4n-1,n∈N*
,且a2,a5,a14构成等比数列.
(1)证明:a2=
4a1+5

(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,对于任意的正整数n都有等式Sn=
1
4
a
2
n
+
1
2
an
(n∈N*)成立.
(1)求数列{an}的通项公式;
(2)令数列bn=|c|
an
2n
Tn
为数列{bn}的前n项和,若Tn>8对n∈N*恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案