精英家教网 > 高中数学 > 题目详情

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20161月至201812月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,判断下列结论:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在78月;

4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.

其中正确结论的个数为(

A.1B.2C.3D.4

【答案】C

【解析】

由题图可知逐一分析即可,这三年8月到9月的月接待游客量在减少,则结论(1)错误,(2)(3)(4)正确.

由题图可知,这三年8月到9月的月接待游客量在减少,则结论(1)错误;

年接待游客数量逐年增加,故(2)正确;

各年的月接待游客量高峰期大致在78月,故(3)正确;

各年1月至6月的月接待游客量相对变化较小,而7月至12月则变化较大,故(4)正确;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式为,数列的通项公式为.,若数列的最大项为,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是(

A.具有正线性相关关系

B.回归直线过样本的中心点

C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg

D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在如右图所示的程序框图中,如果输入,而输出,则在空白处可填入(

A①②③ B②③ C③④ D②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,记作数列,若数列的前项和为,则_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为,左、右焦点分别为,上顶点为,右顶点为,且成等比数列.

1)求椭圆的离心率;

2)判断的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,给出命题;命题:函数的值域为

1)若为真命题,求实数的取值范围;

2)若为真,为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:

每分钟跳绳个数

得分

16

17

18

19

20

年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.

(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)

(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:

(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);

(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面,点分别为的中点.

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)求平面与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案