精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=eax-1,其中a∈R,e=2.718…
(Ⅰ)讨论f(x)的单调性
(Ⅱ)当a=1时,求f(x)在x=1处的切线方程
(Ⅲ)求证:当x>1时.$\frac{1}{x}$$>\frac{e}{{e}^{x}}$.

分析 (Ⅰ)求导数,对a分类讨论,a=0,a>0,a<0,结合指数函数的值域,即可讨论f(x)的单调性;
(Ⅱ)求出函数f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求切线的方程;
(Ⅲ)要证$\frac{1}{x}$$>\frac{e}{{e}^{x}}$(x>1),即$\frac{1}{x}$-$\frac{e}{{e}^{x}}$>0,也就是证$\frac{{e}^{x}}{x}$>e,令h(x)=$\frac{{e}^{x}}{x}$,求出导数,判断单调性,即可得证.

解答 解:(Ⅰ)函数f(x)=eax-1
导数f′(x)=aeax-1
当a=0时,f(x)=e-1,无单调性;
当a>0时,f′(x)>0,f(x)在R上递增;
当a<0时,f′(x)<0,f(x)在R上递减;
(Ⅱ)当a=1时,f(x)=ex-1
导数f′(x)=ex-1
f(x)在x=1处的切线的斜率为k=e0=1,
切点为(1,1),
则f(x)在x=1处的切线的方程为y-1=x-1,
即为x-y=0;
(Ⅲ)证明:要证$\frac{1}{x}$$>\frac{e}{{e}^{x}}$(x>1),
即$\frac{1}{x}$-$\frac{e}{{e}^{x}}$>0,
也就是证$\frac{{e}^{x}}{x}$>e,
令h(x)=$\frac{{e}^{x}}{x}$,则h′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,
即当x>1时,h(x)>e,
∴当x>1时,$\frac{1}{x}$$>\frac{e}{{e}^{x}}$.

点评 本题考查导数的运用:求切线的方程和单调性,考查不等式的证明,注意运用分析法和构造函数法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2{e}^{x-3},x<3}\\{lo{g}_{3}({x}^{2}-6),x≥3}\end{array}\right.$,则f(f(3))=$\frac{2}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>0且a≠1,函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-1<x<1,则函数f(x)的最大值与最小值之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.侧棱长为2的正三棱柱,若其底面周长为9,则该正三棱柱的表面积是(  )
A.$\frac{{9\sqrt{3}}}{2}$B.$16+\frac{{9\sqrt{3}}}{2}$C.$18+\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$-\frac{{3\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(cosx,2),x∈R,函数f(x)=a•b,
(1)当x∈[-$\frac{π}{12}$,$\frac{π}{3}$]时,求|a+b|的最大值与最小值;
(2)设f(α)=$\frac{12}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求tan(2α+$\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=12x-x3在区间[-3,3]上的最大值为(  )
A.-16B.-9C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正项等比数列{an}中,a4•a5=32,则log2a1+log2a2+…+log2a8的值为(  )
A.10B.20C.36D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在R上定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,若f(x)=$|\begin{array}{l}{2sinx}&{2sinx}\\{\sqrt{3}sinx}&{cosx}\end{array}|$,x∈[0,π],则f(x)的递增区间为(  )
A.[0,$\frac{π}{6}$],[$\frac{2π}{3}$,π]B.[$\frac{π}{6}$,$\frac{2π}{3}$]C.[0,$\frac{π}{12}$],[$\frac{7π}{12}$,π]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

同步练习册答案