精英家教网 > 高中数学 > 题目详情
13.函数f(x)=asin(2x+$\frac{π}{6}$)+bcos2x(a、b不全为零)的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

分析 根据正弦、余弦型函数的周期T=$\frac{2π}{|ω|}$,直接求出f(x)的最小正周期即可.

解答 解:函数f(x)=asin(2x+$\frac{π}{6}$)+bcos2x
=$\frac{\sqrt{3}}{2}$asin2x+$\frac{1}{2}$acos2x+bcos2x
=$\frac{\sqrt{3}}{2}$asin2x+($\frac{1}{2}$a+b)cos2x
=$\sqrt{{\frac{3}{4}a}^{2}{+(\frac{1}{2}a+b)}^{2}}$sin(2x+θ),其中tanθ=$\frac{\frac{1}{2}a+b}{\frac{\sqrt{3}}{2}a}$;
∴f(x)的最小正周期为T=$\frac{2π}{2}$=π.
故选:B.

点评 本题考查了正弦、余弦型函数的最小正周期问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,E,F分别是CC1,BC的中点,且AB=AA1
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)若AB=2,求点A1到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,四棱锥P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥CD,AD⊥CD,PC⊥
面ABCD.
(1)求证:面PBC⊥面PAC;
(2)若M,N分别为PA,PB的中点,求三棱锥A-CMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若抛物线y=ax2(a>0)上任意一点到x轴距离比到焦点的距离小1,则实数a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若关于x的不等式x(1+lnx)+2k>kx的解集为A,且(2,+∞)⊆A,则整数k的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边与单位圆x2+y2=1的交点为$P\;(x\;,\frac{{\sqrt{3}}}{2})$,则cos2α=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列两个命题:命题p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为$\frac{π}{4}$.命题q:若函数f(x)=x+$\frac{4}{x}$,(x∈[1,2)),则f(x)的最小值为4.则下列命题为真命题的是(  )
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设实数a,b,x,y满足a2+b2=1,x2+y2=1则ax+by的最大值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四个不同的根,则m的取值范围是(  )
A.(0,2e)B.(0,e)C.(0,1)D.(0,$\frac{1}{e}$)

查看答案和解析>>

同步练习册答案