精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四个不同的根,则m的取值范围是(  )
A.(0,2e)B.(0,e)C.(0,1)D.(0,$\frac{1}{e}$)

分析 由函数图象的对称性可得f(x)-f(-x)在(0,+∞)上有两解,分离参数得-m=xlnx,求出右侧函数的单调性和极值即可得出m的范围.

解答 解:∵f(x)-f(-x)=0有四个不同的根,
且y=f(x)与y=f(-x)的图象关于y轴对称,
∴f(x)=f(-x)在(0,+∞)上有2解,
即lnx=-$\frac{m}{x}$有2解,∴-m=xlnx有2解,
令g(x)=xlnx,则g′(x)=lnx+1,
∴当0<x$<\frac{1}{e}$时,g′(x)<0,当x>$\frac{1}{e}$时,g′(x)>0,
∴g(x)在(0,$\frac{1}{e}$)上单调递减,在($\frac{1}{e}$,+∞)上单调递增,
当x=$\frac{1}{e}$时,f(x)取得极小值f($\frac{1}{e}$)=-$\frac{1}{e}$.
作出g(x)的大致函数图象如图所示:

∵-m=xlnx有两解,
∴-$\frac{1}{e}$<-m<0,即0<m<$\frac{1}{e}$.
故选D.

点评 本题考查方程的根与函数的图象的关系,函数单调性判断与极值计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=asin(2x+$\frac{π}{6}$)+bcos2x(a、b不全为零)的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知Rt△ABC,AB=3,BC=4,CA=5,P为△ABC外接圆上的一动点,且$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AC},则x+y$的最大值是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{{\sqrt{17}}}{6}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对两个变量x、y进行线性回归分析,计算得到相关系数r=-0.9962,则下列说法中正确的是(  )
A.x与y正相关
B.x与y具有较强的线性相关关系
C.x与y几乎不具有线性相关关系
D.x与y的线性相关关系还需进一步确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与抛物线y=2x2关于直线y=x对称的抛物线的准线方程为(  )
A.$x=\frac{1}{8}$B.$x=\frac{1}{2}$C.$x=-\frac{1}{8}$D.$x=-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设正实数x,y,则|x-y|+$\frac{1}{x}$+y2的最小值为(  )
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的前n项和为Sn,且满足2Sn=2n+1+λ(λ∈R).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=$\frac{1}{{(2n+1){{log}_4}({a_n}{a_{n+1}})}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x+1|+|x-a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函数f(x)的最小值为3,求实数 a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线C:y2=2px(p>0)的焦点为F,E是C的准线上位于x轴上方的一点,直线EF与C在第一象限交于点M,在第四象限交于点N,且|EM|=2|MF|=2,则点N到y轴的距离为$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案