精英家教网 > 高中数学 > 题目详情
20.抛物线C:y2=2px(p>0)的焦点为F,E是C的准线上位于x轴上方的一点,直线EF与C在第一象限交于点M,在第四象限交于点N,且|EM|=2|MF|=2,则点N到y轴的距离为$\frac{9}{4}$.

分析 由题意可知丨FM丨=1,|EM|=2,丨EF丨=3,根据相似三角形的性质,即可求得p的值,由丨EN丨=2丨DN丨,根据抛物线的定义,即可求得丨DN丨=3,点N到y轴的距离为丨DN丨-$\frac{p}{2}$.

解答 解:过M,N做MH⊥l,ND⊥l,垂足分别为H,D,
由抛物线的定义可得丨FM丨=丨MH丨,丨FN丨=丨DN丨
|EM|=2|MF|=2,则丨FM丨=1,|EM|=2,丨EF丨=3,
∴∠EMH=$\frac{π}{3}$,∠MEH=$\frac{π}{6}$,
∴p=$\frac{3}{2}$,抛物线的标准方程为y2=3x,
在Rt△EDN中,sin∠MED=$\frac{丨DN丨}{丨EN丨}$,
则丨EN丨=2丨DN丨,即丨EM丨+丨MF丨+丨DN丨=2丨DN丨,
则丨DN丨=3,
点N到y轴的距离为丨DN丨-$\frac{p}{2}$=3-$\frac{3}{4}$=$\frac{9}{4}$,
故答案为:$\frac{9}{4}$.

点评 本题考查抛物线的简单几何性质,抛物线的定义,考查三角形的相似,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四个不同的根,则m的取值范围是(  )
A.(0,2e)B.(0,e)C.(0,1)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex[x2+(a+1)x+2a-1].
(1)当a=-1时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围;
(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.已知命题p,q,若p∨(¬q)为真命题,则q一定是假命题
B.命题“?x∈R,2x>0”的否定是“$?{x_0}∈R,{2^{x_0}}<0$”
C.“$x=\frac{π}{4}$”是“tan x=l”的充分不必要条件
D.“若x1>1,x2>1,则x1+x2>2”的否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{xlnx}{x-1}+ax-1$在x=2处的切线平行于直线y=(1-ln2)x.
(I)求a的值,并判断f(x)在(1,+∞)上的单调性.
(II)求证:$f(x)>\frac{x-1}{{{x^2}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5. 如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,AB=DP=2$\sqrt{2}$,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;      
(Ⅱ)当三棱锥B-EFC的体积等于四棱锥P-ABCD体积的$\frac{1}{6}$时,求$\frac{PF}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,在正方体ABCD-A1B1C1D1中,点G在棱AA1上,AG=$\frac{1}{3}$AA1,E,F分别是棱
C1D1,B1C1的中点,过E,F,G三点的截面α将正方体分成两部分,则正方体的四个侧面被截面α截得的上、下两部分面积之比为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱柱ABCD-A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC=$\frac{π}{2}$.
(1)求证:B1C1∥平面BCD1
(2)求证:平面A1ABB1⊥平面BCD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,则满足f(f(m))>f(m)+1的m的取值范围是(  )
A.$({-\frac{1}{2},+∞})$B.)(0,+∞)C.(-1,+∞)D..$({-\frac{1}{3},+∞})$

查看答案和解析>>

同步练习册答案