精英家教网 > 高中数学 > 题目详情
5. 如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,AB=DP=2$\sqrt{2}$,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;      
(Ⅱ)当三棱锥B-EFC的体积等于四棱锥P-ABCD体积的$\frac{1}{6}$时,求$\frac{PF}{PB}$的值.

分析 (I)利用勾股定理的逆定理证明AD⊥AP,AC⊥BC,从而AD⊥平面PAC,于是AD⊥PC;
(II)利用面面垂直的性质证明PA⊥平面ABCD,根据棱锥的体积关系得出F到平面ABCD的距离,从而得出$\frac{PF}{PB}$的值.

解答 (I)证明:连接AC,∵BC=AD=2,AB=2$\sqrt{2}$,∠ABC=45°,
∴AC=$\sqrt{4+8-2×2×2\sqrt{2}×cos45°}$=2,
∴AC2+BC2=AB2,∴AC⊥BC,
又AD∥BC,∴AD⊥AC,
∵AD=AP=2,DP=2$\sqrt{2}$,∴AD⊥AP,
又AP?平面APC,AC?平面APC,AP∩AC=A,
∴AD⊥平面PAC,又PC?平面APC,
∴AD⊥PC.
(II)解:∵侧面PAD⊥底面ABCD,
侧面PAD∩底面ABCD=AD,AD⊥PA,PA?平面PAD,
∴PA⊥平面ABCD,
∴VP-ABCD=$\frac{1}{3}{S}_{四边形ABCD}PA$,
设F到平面ABCD的距离为h,则
VB-CEF=VF-BCE=$\frac{1}{3}{S}_{△BCE}•h$=$\frac{1}{3}•\frac{1}{4}{S}_{四边形ABCD}•h$,
∴$\frac{1}{3}•\frac{1}{4}{S}_{四边形ABCD}•h$=$\frac{1}{6}$VP-ABCD=$\frac{1}{6}•$$\frac{1}{3}{S}_{四边形ABCD}PA$,
∴h=$\frac{2}{3}PA$,
∴$\frac{FB}{PB}$=$\frac{h}{PA}$=$\frac{2}{3}$,
∴$\frac{PF}{PB}$=$\frac{1}{3}$.

点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设正实数x,y,则|x-y|+$\frac{1}{x}$+y2的最小值为(  )
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,数列{bn}的前n项和为Sn,若不等式Sn>kan-1对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高二文科100名学生参加了语数英学科竞赛,年级为了解这些学生语文和数学成绩的情况,将100名学生的语文和数学成绩统计如表:
语文
及格
数学13m5
12n9
及格10147
(I)若数学成绩的优秀率为35%,现利用随机抽样从数学成绩“优秀”的学生中抽取1名学生,求该生语文成绩为“及格”的概率;
(II)在语文成绩为“良”的学生中,已知m≥10,n≥10,求数学成绩“优”比“良”的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线C:y2=2px(p>0)的焦点为F,E是C的准线上位于x轴上方的一点,直线EF与C在第一象限交于点M,在第四象限交于点N,且|EM|=2|MF|=2,则点N到y轴的距离为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}{2x-y-2≥0}\\{x+y-1≤0}\\{y+1≥0}\end{array}\right.$,z=mx+y的最大值为3,则实数m的值是(  )
A.-2B.3C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面
ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设{an}是单调递增的等差数列,Sn为其前n项和,且满足3S4=2S5,a5+2是a3,a12的等比中项.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}={3^{n+1}}-3({n∈{N^*}})$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案