精英家教网 > 高中数学 > 题目详情
16.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,数列{bn}的前n项和为Sn,若不等式Sn>kan-1对一切n∈N*恒成立,求实数k的取值范围.

分析 (Ⅰ)利用等比数列{an}满足an+1+an=9•2n-1,确定数列的公比与首项,即可求数列{an}的通项公式;
(Ⅱ)利用错误相减法求出Sn,再利用不等式Sn>kan-1,分离参数,求最值,即可求实数k的取值范围.

解答 解:(Ⅰ)设等比数列{an}的公比为q,
∵an+1+an=9•2n-1
∴a2+a1=9,a3+a2=18,
∴q=$\frac{{a}_{3}+{a}_{2}}{{a}_{2}+{a}_{1}}$=$\frac{18}{9}$=2  
又2a1+a1=9,∴a1=3.
∴an=3•2n-1.  n∈N*
(Ⅱ)bn=nan=3n•2n-1
∴Sn=3×1×20+3×2×21+…+3(n-1)×2n-2+3n×2n-1
∴$\frac{1}{3}$Sn=1×20+2×21+…+(n-1)×2n-2+n×2n-1
∴$\frac{2}{3}$Sn=1×21+2×22+…+(n-1)×2n-1+n×2n
∴-$\frac{1}{3}$Sn=1+21+22+…+2n-1-n×2n=$\frac{1-{2}^{n}}{1-2}$-n×2n=(1-n)2n-1,
∴Sn=3(n-1)2n+3,
∵Sn>kan-1对一切n∈N*恒成立,
∴k<$\frac{{S}_{n}+1}{{a}_{n}}$=$\frac{3(n-1){2}^{n}+4}{3•{2}^{n-1}}$=2(n-1)+$\frac{4}{3•{2}^{n-1}}$,
令f(n)=2(n-1)+$\frac{4}{3•{2}^{n-1}}$,
∴f′(n)=2+$\frac{8ln2}{3}$•($\frac{1}{2}$)n>0,
∴f(n)随n的增大而增大,
∴f(n)min=f(1)=$\frac{4}{3}$,
∴实数k的取值范围为(-∞,$\frac{4}{3}$).

点评 本题考查数列递推式,考查等比数列的通项与求和,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占$\frac{8}{13}$,统计成绩后,得到如下的2×2列联表:
分数大于等于120分分数不足120分合 计
周做题时间不少于15小时15419
周做题时间不足15小时101626
合 计252045
(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)( i) 按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
( ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若从集合{1,2,3,5}中随机地选出三个元素,则满足其中两个元素的和等于第三个元素的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={-1,0,1},B={y|y=2x-2,x∈A},则A∩B=(  )
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex[x2+(a+1)x+2a-1].
(1)当a=-1时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围;
(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$a=\int_0^3{({2x-1})dx}$,则二项式${({x-\frac{a}{2x}})^6}$展开式中x2项的系数为135 (用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.已知命题p,q,若p∨(¬q)为真命题,则q一定是假命题
B.命题“?x∈R,2x>0”的否定是“$?{x_0}∈R,{2^{x_0}}<0$”
C.“$x=\frac{π}{4}$”是“tan x=l”的充分不必要条件
D.“若x1>1,x2>1,则x1+x2>2”的否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5. 如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,AB=DP=2$\sqrt{2}$,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;      
(Ⅱ)当三棱锥B-EFC的体积等于四棱锥P-ABCD体积的$\frac{1}{6}$时,求$\frac{PF}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF平行且等于2CE,G是线段BF上的一点,AB=AF=BC=2.
(1)当GB=GF时,求证:EG∥平面ABC;
(2)求二面角E-BF-A的余弦值.

查看答案和解析>>

同步练习册答案