精英家教网 > 高中数学 > 题目详情
6.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF平行且等于2CE,G是线段BF上的一点,AB=AF=BC=2.
(1)当GB=GF时,求证:EG∥平面ABC;
(2)求二面角E-BF-A的余弦值.

分析 (1)取AB的中点D,连接GD,CD,利用中位线定理证明四边形CEGD是平行四边形,从而EG∥CD,得出EG∥平面ABC;
(2)建立空间坐标系,求出两平面的法向量,计算法向量的夹角即可得出二面角的大小.

解答 (1)证明:取AB的中点D,连接GD,CD,
∵G是FB的中点,D是AB的中点,
∴GD$\stackrel{∥}{=}$$\frac{1}{2}$AF,又CE$\stackrel{∥}{=}$$\frac{1}{2}$AF,
∴GD$\stackrel{∥}{=}$CE,
∴四边形CEGD是平行四边形,
∴EG∥CD,又CD?平面ABC,GE?平面ABC,
∴EG∥平面ABC.
(2)解:∵AF⊥AC,平面ACEF⊥平面ABC,平面ACEF∩平面ABC=AC,AF?平面ACEF,
∴AF⊥平面ABC,∵BC?平面ABC,
∴AF⊥BC,又AB⊥BC,AF∩AB=A,
∴BC⊥平面ABF,
以B为原点,以BC为x轴,以BA为y轴建立空间直角坐标系B-xyz,
则B(0,0,0),E(2,0,1),F(0,2,2),
∴$\overrightarrow{BE}$=(2,0,1),$\overrightarrow{BF}$=(0,2,2),
设平面BEF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=0}\\{\overrightarrow{n}•\overrightarrow{BF}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2x+z=0}\\{2y+2z=0}\end{array}\right.$,令x=1得$\overrightarrow{n}$=(1,2,-2),
又BC⊥平面ABF,∴$\overrightarrow{m}$=(1,0,0)是平面ABF的一个法向量,
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{1•3}$=$\frac{1}{3}$,
∵二面角E-BF-A为锐二面角,
二面角E-BF-A的余弦值为$\frac{1}{3}$.

点评 本题考查了线面垂直的判定,空间向量与空间角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,数列{bn}的前n项和为Sn,若不等式Sn>kan-1对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面
ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设各项为正的数列{an}满足a1=2017,log2an=1+log2an+1(n∈N+),记An=a1a2…an,则An的值最大时,n=(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.实数x,y满足约束条件$\left\{\begin{array}{l}{y-2x≤0}\\{2x+y≤6}\\{y≥\frac{1}{2}}\end{array}\right.$,则2x+$\frac{1}{y}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{{e}^{f(|x|+1)},x<1}\end{array}\right.$,(e为自然对数的底数),则f(e)=1,函数y=f(f(x))-1的零点有3个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设{an}是单调递增的等差数列,Sn为其前n项和,且满足3S4=2S5,a5+2是a3,a12的等比中项.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}={3^{n+1}}-3({n∈{N^*}})$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{5π}{6},|{\overrightarrow a}|=2,|{\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•({2\overrightarrow b-\overrightarrow a})$=-10.

查看答案和解析>>

同步练习册答案