精英家教网 > 高中数学 > 题目详情
6.为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占$\frac{8}{13}$,统计成绩后,得到如下的2×2列联表:
分数大于等于120分分数不足120分合 计
周做题时间不少于15小时15419
周做题时间不足15小时101626
合 计252045
(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)( i) 按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
( ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

分析 (I)根据比例计算每周自主做数学题的时间不足15小时,且数学平均成绩不足120分的人数,再根据合计数填表;
(II)(i)计算抽取的人数中分数不足120分的人数,根据超几何分布的概率公式计算;
(ii)根据二项分布的性质计算.

解答 解:(Ⅰ)列联表:

分数大于等于120分分数不足120分合计
周做题时间不少于15小时15419
周做题时间不足15小时        10        1626
合计        25        2045
∵${K^2}=\frac{{45{{(15×16-10×4)}^2}}}{25×20×19×26}≈7.287>6.635$,
∴能在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.
(Ⅱ)( i)9×$\frac{20}{45}$=4,故需要从不足120分的学生中抽取4人.
X的可能取值为0,1,2,3,4,
P(X=0)=$\frac{{C}_{4}^{4}}{{C}_{20}^{4}}$,P(X=1)=$\frac{{C}_{4}^{3}{C}_{16}^{1}}{{C}_{20}^{4}}$,P(X=2)=$\frac{{{C}_{4}^{2}C}_{16}^{2}}{{C}_{20}^{4}}$,P(X=3)=$\frac{{{C}_{4}^{1}C}_{16}^{3}}{{C}_{20}^{4}}$,P(X=4)=$\frac{{C}_{16}^{4}}{{C}_{20}^{4}}$.
( ii)从全校大于等于120分的学生中随机抽取1人,此人周做题时间不少于15小时的概率为$\frac{15}{25}$=0.6,
设从全校大于等于120分的学生中随机抽取20人,这些人中周做题时间不少于15小时的人数为随机变量Y,则Y~B(20,0.6),
故E(Y)=12,D(Y)=4.8.

点评 本题考查了独立性检验思想,离散型随机变量的分布列,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=4x的焦点为F,准线为l,点A∈l,点B∈C,若$\overrightarrow{FA}=-3\overrightarrow{FB}$,则|FB|=(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将三角函数$y=sin({2x+\frac{π}{6}})$向左平移$\frac{π}{6}$个单位后,得到的函数解析式为(  )
A.$sin({2x-\frac{π}{6}})$B.$sin({2x+\frac{π}{3}})$C.sin2xD.cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\sqrt{{e^x}+2x-a}$,若曲线y=cosx上存在点(x0,y0)使得f(f(y0))=y0,则实数a的取值范围是(  )
A.[1,e]B.[e-1-1,1]C.[1,e+1]D.[e-1-1,e+1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知Rt△ABC,AB=3,BC=4,CA=5,P为△ABC外接圆上的一动点,且$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AC},则x+y$的最大值是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{{\sqrt{17}}}{6}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对两个变量x、y进行线性回归分析,计算得到相关系数r=-0.9962,则下列说法中正确的是(  )
A.x与y正相关
B.x与y具有较强的线性相关关系
C.x与y几乎不具有线性相关关系
D.x与y的线性相关关系还需进一步确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设正实数x,y,则|x-y|+$\frac{1}{x}$+y2的最小值为(  )
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,数列{bn}的前n项和为Sn,若不等式Sn>kan-1对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案