精英家教网 > 高中数学 > 题目详情
14.设函数$f(x)=\sqrt{{e^x}+2x-a}$,若曲线y=cosx上存在点(x0,y0)使得f(f(y0))=y0,则实数a的取值范围是(  )
A.[1,e]B.[e-1-1,1]C.[1,e+1]D.[e-1-1,e+1]

分析 考查题设中的条件,函数f(f(y0))的解析式不易得出,直接求最值有困难,考察四个选项,发现有两个特值区分开了四个选项,0出现在了B,D两个选项的范围中,e+1出现在了C,D两个选项所给的范围中,故可通过验证参数为0与e+1时是否符合题意判断出正确选项.

解答 解:曲线y=cosx上存在点(x0,y0)使得f(f(y0))=y0,则y0∈[-1,1]
考查四个选项,B,D两个选项中参数值都可取0,C,D两个选项中参数都可取e+1,
A,B,C,D四个选项参数都可取1,
由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项
当a=0时,f(x)=$\sqrt{{e}^{x}+2x}$,是一个增函数,且函数值恒非负,
故只研究y0∈[0,1]时f(f(y0))=y0是否成立
由于f(x)=$\sqrt{{e}^{x}+2x}$是一个增函数,可得出f(y0)≥f(0)=1,
而f(1)=$\sqrt{e+2}$>1,故a=0符合题意,由此知A、C两个选项不正确
当a=e+1时,f(x)=$\sqrt{{e}^{x}+2x-e-1}$,此函数是一个增函数,
f(1)=$\sqrt{e+2-e-1}$=1,f(f(1))=f(1)=1,
故a=e+1符合题意,故A,B两个选项不正确
综上讨论知,可确定A、B,C三个选项不正确.
故D选项正确.
故选:D.

点评 本题是一个函数综合题,解题的关键与切入点是观察出四个选项中同与不同点,判断出参数0与e+1是两个特殊值,结合排除法做题的技巧及函数的性质判断出正确选项,本题考查了转化的思想,观察探究的能力,属于考查能力的综合题,易因为找不到入手处致使无法解答失分,易错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E为A1C1的中点,$\frac{{C{C_1}}}{{{C_1}E}}=\sqrt{2}$
(Ⅰ)证明:CE⊥平面AB1C1
(Ⅱ)若AA1=$\sqrt{6}$,∠BAC=30°,求点E到平面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边与单位圆x2+y2=1的交点为$P\;(x\;,\frac{{\sqrt{3}}}{2})$,则cos2α=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知奇函数f(x),在(0,+∞)上,f(x)=x2-3,则f(x)>0的解集为($\sqrt{3}$,+∞)∪(-$\sqrt{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设实数a,b,x,y满足a2+b2=1,x2+y2=1则ax+by的最大值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知两个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,且满足$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,存在向量$\overrightarrow{c}$使cos($\overrightarrow{a}$-$\overrightarrow{c}$,$\overrightarrow{b}$-$\overrightarrow{c}$)=$\frac{1}{2}$,则|$\overrightarrow{c}$|的最大值为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占$\frac{8}{13}$,统计成绩后,得到如下的2×2列联表:
分数大于等于120分分数不足120分合 计
周做题时间不少于15小时15419
周做题时间不足15小时101626
合 计252045
(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)( i) 按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
( ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.经过点M(-2,-4)且倾斜角为45°的直线l与抛物线C:y2=2px(p>0)交于A、B两点,|MA|、|AB|、|BM|成等比数列.
(Ⅰ)写出直线l的参数方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={-1,0,1},B={y|y=2x-2,x∈A},则A∩B=(  )
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

同步练习册答案