分析 (Ⅰ)根据倾斜角为45°,即参数为$\frac{\sqrt{2}}{2}t$,可得直线l的参数方程.
(Ⅱ)把参数方程代入y2=2px,直线参数方程的几何意义求解即可.
解答 解:(Ⅰ)过点M(-2,-4)且倾斜角为45°,设参数为t,则直线l的参数方程为$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).
(Ⅱ)把参数方程代入y2=2px,得${t^2}-(2\sqrt{2}p+8\sqrt{2})t+32+8p=0$,${t_1}+{t_2}=2\sqrt{2}p+8\sqrt{2}$,t1t2=32+8p,
根据直线参数的几何意义,可得|MA||MB|=|t1t2|=32+8p,
那么:$|AB{|^2}={({t_1}-{t_2})^2}={({t_1}+{t_2})^2}-4{t_1}{t_2}={(2\sqrt{2}p+8\sqrt{2})^2}-4(32+8p)=8p(p+4)$,
∵|MA|、|AB|、|BM|成等比数列,
∴|AB|2=|MA||MB|,8p(p+4)=32+8p,p>0.
故得p=1.
点评 本题考查了直线l的参数方程的求法以及直线参数方程的几何意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,e] | B. | [e-1-1,1] | C. | [1,e+1] | D. | [e-1-1,e+1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x与y正相关 | |
| B. | x与y具有较强的线性相关关系 | |
| C. | x与y几乎不具有线性相关关系 | |
| D. | x与y的线性相关关系还需进一步确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2-\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2+\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{4}$ | B. | $\frac{3\root{3}{2}}{2}$ | C. | 2 | D. | $\root{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-2,0) | C. | (-1,0) | D. | (-2,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 语文 | ||||
| 优 | 良 | 及格 | ||
| 数学 | 优 | 13 | m | 5 |
| 良 | 12 | n | 9 | |
| 及格 | 10 | 14 | 7 | |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com