精英家教网 > 高中数学 > 题目详情
17.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E为A1C1的中点,$\frac{{C{C_1}}}{{{C_1}E}}=\sqrt{2}$
(Ⅰ)证明:CE⊥平面AB1C1
(Ⅱ)若AA1=$\sqrt{6}$,∠BAC=30°,求点E到平面AB1C的距离.

分析 (1)证明B1C1⊥平面ACC1A1得出B1C1⊥CE,利用相似三角形证明CE⊥AC1,故而CE⊥平面AB1C1
(2)求出各线段的长,根据V${\;}_{{B}_{1}-ACE}$=V${\;}_{E-A{B}_{1}C}$解出点E到平面AB1C的距离.

解答 (I)证明:∵CC1⊥平面A1B1C1,B1C1?平面A1B1C1
∴CC1⊥B1C1,又B1C1⊥A1C1
∴B1C1⊥平面AA1C1C,又CE?平面AA1C1C,
∴B1C1⊥CE,
∵E是A1C1的中点,$\frac{C{C}_{1}}{{C}_{1}E}$=$\sqrt{2}$,
∴$\frac{AC}{C{C}_{1}}$=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,∴$\frac{C{C}_{1}}{{C}_{1}E}=\frac{AC}{C{C}_{1}}$,
∴Rt△CC1E∽RtACC1,∴∠C1CE=∠CAC1
∴∠CAC1+∠ACE=90°,即CE⊥AC1
又AC1?平面AB1C1,B1C1?平面AB1C1,B1C1∩AC1=C1
∴CE⊥平面AB1C1
(II)∵AA1=$\sqrt{6}$,$\frac{C{C}_{1}}{{C}_{1}E}$=$\sqrt{2}$,
∴C1E=$\sqrt{3}$,AC=2$\sqrt{3}$,
∴S△ACE=$\frac{1}{2}×2\sqrt{3}×\sqrt{6}$=3$\sqrt{2}$,
∵∠BAC=30°,∠ACB=90°,AC=2$\sqrt{3}$,
∴AB=4,B1C1=BC=2,
∴AB1=$\sqrt{22}$,B1C=$\sqrt{10}$,V${\;}_{{B}_{1}-ACE}$=$\frac{1}{3}{S}_{△ACE}•{B}_{1}{C}_{1}$=$\frac{1}{3}×3\sqrt{2}×2$=2$\sqrt{2}$,
∴AC2+B1C2=AB12,∴AC⊥B1C,
∴S${\;}_{△A{B}_{1}C}$=$\frac{1}{2}×2\sqrt{3}×\sqrt{10}$=$\sqrt{30}$,
设E到平面AB1C的距离为h,则V${\;}_{E-A{B}_{1}C}$=$\frac{1}{3}{S}_{△A{B}_{1}C}•h$=$\frac{\sqrt{30}h}{3}$,
∵V${\;}_{{B}_{1}-ACE}$=V${\;}_{E-A{B}_{1}C}$,∴2$\sqrt{2}$=$\frac{\sqrt{30}h}{3}$,解得h=$\frac{2\sqrt{15}}{5}$.
点E到平面AB1C的距离为$\frac{2\sqrt{15}}{5}$.

点评 本题考查了线面垂直的性质与判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知正项等比数列{an}的公比q>1,且满足a2=6,a1a3+2a2a4+a3a5=900,设数列{an}的前n项和为Sn,若不等式λan≤1+Sn对一切n∈N*恒成立,则实数λ的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,则|$\frac{2i}{1+i}$|=(  )
A.1B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy中,过椭圆M:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0)焦点的直线x+y-2$\sqrt{2}$=0交M于P,Q两点,G为PQ的中点,且OG的斜率为9.
(Ⅰ)求M的方程;
(Ⅱ)A、B是M的左、右顶点,C、D是M上的两点,若AC⊥BD,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于点(3,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)+f(x)=-6x2+(3c+9)x,命题p:?x1,x2∈[-1,1],|g(x1)-g(x2)|>1为假命题,求实数c的取值范围;
(Ⅲ)若h(x)+f(x)=x3-7x2+9x+clnx(c是与x无关的负数),判断函数h(x)有几个不同的零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC内角A,B,C的对边分别为a,b,c,且满足2acosA=c•cosB+b•cosC,其外接圆的半径R=2.
(1)求角A的大小;
(2)若b2+c2=18,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=4x的焦点为F,准线为l,点A∈l,点B∈C,若$\overrightarrow{FA}=-3\overrightarrow{FB}$,则|FB|=(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=-1,则$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\sqrt{{e^x}+2x-a}$,若曲线y=cosx上存在点(x0,y0)使得f(f(y0))=y0,则实数a的取值范围是(  )
A.[1,e]B.[e-1-1,1]C.[1,e+1]D.[e-1-1,e+1]

查看答案和解析>>

同步练习册答案