精英家教网 > 高中数学 > 题目详情
4.已知集合A={-1,0,1},B={y|y=2x-2,x∈A},则A∩B=(  )
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

分析 运用列举法求出集合B,再由交集的定义,即可得到所求.

解答 解:集合A={-1,0,1},
B={y|y=2x-2,x∈A}={2-1-2,20-2,21-2}
={-$\frac{3}{2}$,-1,0},
则A∩B={-1,0},
故选:C.

点评 本题考查集合的运算,主要是交集的运算,注意运用交集的定义和列举法表示集合,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\sqrt{{e^x}+2x-a}$,若曲线y=cosx上存在点(x0,y0)使得f(f(y0))=y0,则实数a的取值范围是(  )
A.[1,e]B.[e-1-1,1]C.[1,e+1]D.[e-1-1,e+1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设正实数x,y,则|x-y|+$\frac{1}{x}$+y2的最小值为(  )
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=alnx+x2-(a+2)x恰有两个零点,则实数a的取值范围是(  )
A.(-1,+∞)B.(-2,0)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x+1|+|x-a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函数f(x)的最小值为3,求实数 a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={x^2}+\sqrt{2}(m-1)x+\frac{m}{4}$,现有一组数据(数据量较大),从中随机抽取10个,绘制所得的茎叶图如图所示,且茎叶图中的数据的平均数为2.(茎叶图中的数据均为小数,其中茎为整数部分,叶为小数部分)
(Ⅰ)现从茎叶图的数据中任取4个数据分别替换m的值,
求至少有2个数据使得函数f(x)没有零点的概率;
(Ⅱ)以频率估计概率,若从该组数据中随机抽取4个数据分别替换m的值,记使得函数f(x)没有零点的个数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,数列{bn}的前n项和为Sn,若不等式Sn>kan-1对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高二文科100名学生参加了语数英学科竞赛,年级为了解这些学生语文和数学成绩的情况,将100名学生的语文和数学成绩统计如表:
语文
及格
数学13m5
12n9
及格10147
(I)若数学成绩的优秀率为35%,现利用随机抽样从数学成绩“优秀”的学生中抽取1名学生,求该生语文成绩为“及格”的概率;
(II)在语文成绩为“良”的学生中,已知m≥10,n≥10,求数学成绩“优”比“良”的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

同步练习册答案