精英家教网 > 高中数学 > 题目详情
7.若从集合{1,2,3,5}中随机地选出三个元素,则满足其中两个元素的和等于第三个元素的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

分析 先求出基本事件总数n=${C}_{4}^{3}$=4,再由列举法求出满足其中两个元素的和等于第三个元素包含的基本事件个数,由此能求出满足其中两个元素的和等于第三个元素的概率.

解答 解:从集合{1,2,3,5}中随机地选出三个元素,
基本事件总数n=${C}_{4}^{3}$=4,
满足其中两个元素的和等于第三个元素包含的基本事件有:
(1,2,3),(2,3,5),共有2个,
∴满足其中两个元素的和等于第三个元素的概率p=$\frac{2}{4}=\frac{1}{2}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.将三角函数$y=sin({2x+\frac{π}{6}})$向左平移$\frac{π}{6}$个单位后,得到的函数解析式为(  )
A.$sin({2x-\frac{π}{6}})$B.$sin({2x+\frac{π}{3}})$C.sin2xD.cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对两个变量x、y进行线性回归分析,计算得到相关系数r=-0.9962,则下列说法中正确的是(  )
A.x与y正相关
B.x与y具有较强的线性相关关系
C.x与y几乎不具有线性相关关系
D.x与y的线性相关关系还需进一步确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设正实数x,y,则|x-y|+$\frac{1}{x}$+y2的最小值为(  )
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的前n项和为Sn,且满足2Sn=2n+1+λ(λ∈R).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=$\frac{1}{{(2n+1){{log}_4}({a_n}{a_{n+1}})}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=alnx+x2-(a+2)x恰有两个零点,则实数a的取值范围是(  )
A.(-1,+∞)B.(-2,0)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x+1|+|x-a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函数f(x)的最小值为3,求实数 a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,数列{bn}的前n项和为Sn,若不等式Sn>kan-1对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面
ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

同步练习册答案