精英家教网 > 高中数学 > 题目详情
20.计算:$\frac{tan12°+tan33°}{1-tan12°tan33°}$.

分析 由条件利用两角和的正切公式求得要求式子的值.

解答 解:$\frac{tan12°+tan33°}{1-tan12°tan33°}$=tan(12°+33°)=tan45°=1.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.下列对应为函数的是(1)(4)
(1)x→y,y=$\frac{2}{x}$,x≠0,x∈R,y∈R;    (2)x→y,y=x,x∈{x|0≤x≤6},y∈{y|0≤y≤3}
(3)x→y,y2=x,x∈N,y∈R;         (4)x→y,y=$\frac{x}{6}$,x∈{x|0≤x≤6},y∈{y|0≤y≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}中,已知an=tan(n+2)•tan(n+1),则其前n项和为$\frac{1}{tan1}$[tan(n+2)-tan2]-n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{sin\frac{11π}{3}}{cos\frac{4π}{3}}$sin(2x+φ),0<φ<$\frac{π}{2}$,且f(x)的图象关于直线x=$\frac{π}{12}$对称.
(1)求函数f(x)的单调递增区间;
(2)若对于任意的x∈[0,$\frac{π}{2}$],都有m2-3m+$\frac{1}{2}$≤f(x)≤-2m2+3m+$\sqrt{3}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-2x2+22x,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N+)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式an及前n项和Sn
(2)存在k∈N+,使得$\frac{S_1}{1}+\frac{S_2}{2}+…+\frac{S_n}{n}<k$对任意n∈N*恒成立,求出k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若集合A={x|$\sqrt{{x}^{2}-3}$=ax+1,x∈R}为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个推导过程符合演绎推理三段论形式且推理正确的是(  )
A.大前提:无限不循环小数是无理数;小前提:$\sqrt{11}$是无理数;结论:$\sqrt{11}$是无限不循环小数
B.大前提:无限不循环小数是无理数;小前提:$\sqrt{11}$是无限不循环小数;结论:$\sqrt{11}$是无理数
C.大前提:$\sqrt{11}$是无限不循环小数;小前提:无限不循环小数是无理数;结论:$\sqrt{11}$是无理数
D.大前提:$\sqrt{11}$是无限不循环小数;小前提:$\sqrt{11}$是无理数;结论:无限不循环小数是无理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sin(∂+θ)=$\frac{1}{2}$,sin(∂-θ)=$\frac{1}{3}$.证明:tan∂=5tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合P={x|-3<x<-2,或x>1},M={x|a≤x≤b},且P∪M={x|x>-3},P∩M={x|1<x≤3},求实数a,b的值.

查看答案和解析>>

同步练习册答案