分析 根据函数单调性的性质将不等式进行转化,利用参数分离法转化为求函数的最值,结合一元二次函数的性质进行求解即可.
解答 解:∵定义在(-∞,3]上单调减函数f(x)使得f(1+sin2x)≤f(a-2cosx)对一切实数x都成立,
∴等价为1+sin2x≥a-2cosx,
即a≤1+sin2x+2cosx恒成立,且a-2cosx≤3,即a≤3+2cosx,则a≤1,
设h(x)=1+sin2x+2cosx,则h(x)=1+sin2x+2cosx=2-cos2x+2cosx=-(cosx-1)2+1,
∵-1≤cosx≤1,∴-3≤h(x)≤1,
则a≤-3,∵a≤1,
∴a≤-3.
即实数a的取值范围是(-∞,-3]
点评 本题主要考查不等式恒成立问题,根据函数单调性的性质将不等式进行转化,结合一元二次函数的性质求出函数的最值是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | 4 | C. | -$\frac{4}{5}$ | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com