| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 利用两向量平行的充要条件求出三角形的边与角的关系,利用正弦定理将角化为边,再利用余弦定理求出B的余弦,求出角.
解答 解:∵向量$\overrightarrow m$=(a+b,sinC),$\overrightarrow n$=($\sqrt{3}$a+c,sinB-sinA),若$\overrightarrow m$∥$\overrightarrow n$,
∴(a+b)(sinB-sinA)-sinC($\sqrt{3}$a+c)=0,
由正弦定理知:(a+b)(b-a)=c($\sqrt{3}$a+c),即a2+c2-b2=-$\sqrt{3}$ac
由余弦定理知:2accosB=-$\sqrt{3}$ac,
∴cosB=-$\frac{\sqrt{3}}{2}$.
∵B∈(0,π),
∴B=$\frac{5π}{6}$=150°.
故选:D.
点评 本题考查向量平行的充要条件、三角形的正弦定理、余弦定理,综合性比较强.
科目:高中数学 来源: 题型:选择题
| A. | (2$\sqrt{2}$,$\frac{π}{4}$) | B. | (-2$\sqrt{2}$,$\frac{π}{4}$) | C. | (2$\sqrt{2}$,$\frac{3π}{4}$) | D. | (2$\sqrt{2}$,-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 997个 | B. | 954个 | C. | 682个 | D. | 3 个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(Х2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com