精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2(x∈R)的图象过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直.
(1)求函数f(x)的解析式;
(2)若函数g(x)=mx3+数学公式f′(x)-3x在(2,+∞)上是减函数,求实数m的取值范围.

解:(1)∵f′(x)=3ax2+2bx
∴由题意有
∴f(x)=x3+3x2
(2)∵g′(x)=3mx2+2x-1,
∴依据题意:当x∈(2,+∞)时,3mx2+2x-1≤0恒成立;
即:在x∈(2,+∞)时恒成立;令
易求得在x∈(2,+∞)的最小值为

分析:(1)本题的解析式中有两个参数,故需要两个方程,由图象过定点P可以得到一个方程,另一个由点P处的切线与直线x-3y=0垂直可以得到切线的斜率,得到另一个方程,由此两方程联立即可得到两个参数的值.
(2)求解本题中的参数取值范围需要先求出g(x)的解析式,然后求出其导数,由于函数在(2,+∞)上是减函数,故在这个区间上导数值应小于等于0,由此关系得到参数m的不等式,解之即得.
点评:本题的考点是函数的解析式求解方法及函数的单调性与导数的关系,用导数研究函数的单调性是一个重要的方法,导数的引入给函数单调性的研究带来了极大的便利,学习时要注意导数在函数中的使用方法及规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案