精英家教网 > 高中数学 > 题目详情
16.已知a=30.7,b=0.72016,c=log2017$\frac{1}{2016}$,则(  )
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

分析 利用指数函数、对数函数的单调性直接求解.

解答 解:∵a=30.7>30=1,
0<b=0.72016<0.70=1,
c=log2017$\frac{1}{2016}$<log20171=0,
∴a>b>c.
故选:C.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设命题p:?x∈R,x02>lnx,则¬p为(  )
A.?x0∈R,x02>lnx0B.?x0∈R,x02≥lnx0C.?x0∈R,x02<lnx0D.?x0∈R,x02≤lnx0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知公差不为0的等差数列{an}的前三项和为12,且a2,a4,a8成等比数列.
( I)求数列{an}的通项公式;
( II)设${b_n}={2^{a_n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=2sin($\frac{1}{2}$x-$\frac{π}{3}$)的单调增区间为[4kπ-$\frac{π}{3}$,4kπ+$\frac{5π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\frac{1}{x}$,则$\underset{lim}{x→a}$$\frac{f(x)-f(a)}{x-a}$=-$\frac{1}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设等差数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等差数列,类比以上结论,设等比数列{bn}的前
n项积为Tn,则(  )
A.Tn,T2n,T3n成等比数列B.Tn,T2n-Tn,T3n-T2n成等差数列
C.Tn,$\frac{{T}_{2n}}{{T}_{n}}$,$\frac{{T}_{3n}}{{T}_{2n}}$成等比数列D.Tn,T2n-Tn,T3n-T2n成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线与圆相切时,圆心与切点连线与直线垂直,由类比推理可知,平面与球相切时的结论为球心与切点连线与平面垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(x-$\frac{2}{\sqrt{x}}$)6展开式中,常数项为(  )
A.-192B.-160C.60D.240

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lg(x2+1),g(x)=($\frac{1}{2}$)x-m,若对任意x1∈[0,3],存在x2∈[1,2],使得f(x1)≤g(x2),则实数m的取值范围是(-∞,-$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案