分析 (I)利用等差数列通项公式、等比数列性质列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(II)由${b_n}={2^{a_n}}={2^{2n}}={4^n}$,得到数列{bn}是以4为首项,4为公比的等比数列,由此能求出数列{bn}的前n项和Sn.
解答 本小题满分13分)
解:(I)设等差数列{an}的首项为a1,公差为d.
依题意有$\left\{\begin{array}{l}{a_1}+{a_2}+{a_3}=12\\{a_4}^2={a_2}{a_8}.\end{array}\right.$,即$\left\{\begin{array}{l}{a_1}+d=4\\{d^2}-{a_1}d=0.\end{array}\right.$
由d≠0,解得$\left\{\begin{array}{l}{a_1}=2\\ d=2.\end{array}\right.$
所以an=2n.…(7分)
(II)所以${b_n}={2^{a_n}}={2^{2n}}={4^n}$.
因为$\frac{{{b_{n+1}}}}{b_n}=\frac{{{4^{n+1}}}}{4^n}=4,{b_1}=4$,
所以数列{bn}是以4为首项,4为公比的等比数列.
所以${S_n}=\frac{{4(1-{4^n})}}{1-4}=\frac{4}{3}({4^n}-1)$.…(13分)
点评 本题考查数列的通项公式、前n项和公式的求法,考查等差数列、等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{6}-1}}{6}$ | B. | $\frac{{2\sqrt{2}+\sqrt{3}}}{6}$ | C. | $\frac{{2\sqrt{6}+1}}{6}$ | D. | $\frac{{2\sqrt{2}-\sqrt{3}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}•\overrightarrow{AC}=0$ | B. | $\overrightarrow{AD}•\overrightarrow{BC}=0$ | C. | $\overrightarrow{AB}•\overrightarrow{AD}=0$ | D. | $\overrightarrow{AD}•\overrightarrow{AC}=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>b>a | B. | c>a>b | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1<a<3 | B. | -1<a<3 | C. | -1<a<2 | D. | a<-1,或a>3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com