精英家教网 > 高中数学 > 题目详情
12.三棱锥A-BCD中,AB=AC=AD=2,∠BAD=90°,∠BAC=60°,则$\overrightarrow{AB}$•$\overrightarrow{CD}$等于(  )
A.-2B.2C.-2$\sqrt{3}$D.2$\sqrt{3}$

分析 用$\overrightarrow{AD},\overrightarrow{AC}$表示出$\overrightarrow{CD}$,再计算数量积.

解答 解:∵$\overrightarrow{CD}=\overrightarrow{AD}-\overrightarrow{AC}$,∴$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\overrightarrow{AB}$•($\overrightarrow{AD}-\overrightarrow{AC}$)=$\overrightarrow{AB}•\overrightarrow{AD}$-$\overrightarrow{AB}•\overrightarrow{AC}$=2×2×cos90°-2×2×cos60°=-2.
故选:A.

点评 本题考查了平面向量的数量积运算,向量线性运算的三角形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.以下几个命题中:其中真命题的序号为③④(写出所有真命题的序号)
①设A,B为两点定点,k为非零常数,|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$则动点P的轨迹为椭圆;
③双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}=1$与椭圆$\frac{{x}^{2}}{35}+{y}^{2}$=1有相同的焦点;
④若方程2x2-5x+a=0的两根可分别作为椭圆和双曲线的离心率,则0<a<3;
⑤在平面内,到定点(2,1)的距离与到定直线3x+4y-10=0的距离相等的点的轨迹是抛物线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.当x>0时,x2+mx+1≥0恒成立,且关于t的不等式t2+2t+m≤0有解,则实数m的取值范围是(  )
A.[1,+∞)B.[-2,1]C.(-∞,-2]∪[1,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标平面上,已知长轴为6的椭圆C与抛物线D有共同的焦点F1(-2,0).
(1)求椭圆C与抛物线D的标准方程;
(2)已知椭圆C与抛物线D相交于A、B两点,求△ABF1的面积S${\;}_{△AB{F}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若角$\frac{α}{2}$与-$\frac{π}{8}$的终边重合,则α=4k$π-\frac{π}{4}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC的三个顶点分别为A(1,2),B(4,1),C(3,6),则AC边上的中线BM所在直线的方程为3x-2y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四棱锥A-BCDE中,AE⊥平面BCDE.△BCE是正三角形,BD和CE的交点恰好平分CE,又AE=BE=2,∠CDE=120°,AG=$\frac{\sqrt{2}}{2}$.
(1)证明:平面ABD⊥平面ACE
(2)求异面直线GF和DC所成角的余弦值
(3)求二面B-CA-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,a=1,B=45°,S△ABC=2,则b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式1≤|1-2x|<7的解集是(-3,0]∪[1,4).

查看答案和解析>>

同步练习册答案