精英家教网 > 高中数学 > 题目详情
12.若{a1,a2}⊆A⊆{a1,a2,a3,a4,a5 },则集合A的个数为8.

分析 直接写出满足条件的集合A得答案.

解答 解:∵{a1,a2}⊆A⊆{a1,a2,a3,a4,a5 },
∴集合A是{a1,a2 },{a1,a2,a3 },{a1,a2,a4 },{a1,a2,a5 },{a1,a2,a3,a4},{a1,a2,a3,a5 },{a1,a2,a4,a5 },{a1,a2,a3,a4,a5 }共8个.
故答案为:8.

点评 本题考查子集与真子集,关键是做到不重不漏,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列函数的值域.
(1)y=$\frac{2x+1}{x-1}$(x≠1);
(2)y=$\frac{1-{2}^{x}}{1+{2}^{x}}$;
(3)y=x+$\sqrt{2x+1}$(变式为y=x-$\sqrt{2x+1}$);
(4)y=4x+2x+1
(5)y=x+$\frac{1}{x}$(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{1}{x+2}$(x≠-2.且x∈R),g(x)=x2+1(x∈R).
(1)f(2),g(1)的值;
(2)f[g(2)]的值;
(3)求f(x),g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算log5$\underset{\underbrace{\sqrt{5\sqrt{5\sqrt{…\sqrt{5}}}}}}{n个}$=1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{3{x}^{3}}{\sqrt{1-x}}$+lg(3x+1)的定义域是(  )
A.(-$\frac{1}{3}$,1)B.(-$\frac{1}{3}$,+∞)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=f(x)(x∈R)的图象如图所示,则函数g(x)=f(log${\;}_{\frac{1}{2}}$x)的单调增区间是[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在锐角△ABC中,$\frac{cosA+cosB+cosC}{sinA+sinB+sinC}$<1.(填<、≤、≥、>)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,不正确命题的个数为(  )
①函数y=ax(a>1)与它的反函数y=logax(a>1)的图象没有公共点;
②若函数y=f(x)有反函数,则它一定是单调函数;
③若函数y=f(x)存在反函数y=f-1(x),则必有f[f-1(x)]=f-1[f(x)]=x成立;
④函数与它的反函数在相应区间上有相同的单调性.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=lnx-ax
(1)讨论f(x)单调性.
(2)若f(x)在(1,2)上单调递减,求实数a的范围.

查看答案和解析>>

同步练习册答案