分析 (1)根据点到直线的距离的定义即可求点P到BC的距离;
(2)根据点到平面的距离的定义即可求点A到平面PBC的距离;
(3)根据二面角的定义作出二面角的平面角即可求二面角P-BC-A的大小.
解答
解:(1)∵PA⊥面ABC,
∴PA⊥BC,
∵∠ABC=90°,∴AB⊥BC,
∵AB∩PA=A,
∴BC⊥面PAB,
则BC⊥PB,
则PB是点P到BC的距离,
∵PA=3,AC=4,∠ABC=90°,AB=BC.
∴AB=BC=4×$\frac{\sqrt{2}}{2}$=2$\sqrt{2}$,
则PB=$\sqrt{P{A}^{2}+A{B}^{2}}$=$\sqrt{9+8}$=$\sqrt{17}$,
即点P到BC的距离是PB=$\sqrt{17}$,
(2)由(1)得平面PBC⊥面PAB,
过A作AE⊥PB,
则AE⊥面PBC,
则AE就是点A到平面PBC的距离;
∵$\frac{1}{2}$PA•AB=$\frac{1}{2}$PB•AE,
∴AE=$\frac{PA•AB}{PB}$=$\frac{3×2\sqrt{2}}{\sqrt{17}}$=$\frac{6\sqrt{34}}{17}$,
即点A到平面PBC的距离是$\frac{6\sqrt{34}}{17}$;
(3)由(1)知∵BC⊥面PAB,
∴BC⊥PB,BC⊥AB,
则∠PBA是二面角P-BC-A的平面角,
∵PA=3,AB=2$\sqrt{2}$,
∴tan∠PBA=$\frac{PA}{AB}=\frac{3}{2\sqrt{2}}$=$\frac{3\sqrt{2}}{4}$,
则∠PBA=arctan$\frac{3\sqrt{2}}{4}$,
即二面角P-BC-A的大小是arctan$\frac{3\sqrt{2}}{4}$.
点评 本题主要考查空间距离和空间角的求解,根据点到直线的距离以及点到平面的距离以及二面角的定义进行求解是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {1,2,3} | C. | {1,2} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | (0,4) | C. | (2,4) | D. | (0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com