分析 (1)分别求出A、B,再计算交集;
(2)求出B和∁RA,比较两集合端点值的大小即可得出a的范围.
解答 解:(1)由函数y=lg$\frac{1+x}{2-x}$有意义得$\frac{1+x}{2-x}$>0,即(1+x)(2-x)>0,
解得-1<x<2,即A={x|-1<x<2}.
解不等式(x-1)(x+2)≥0得x≤-2或x≥1,即B={x|x≤-2或x≥1}.
∴A∩B={x|1≤x<2}.
(2)由(1)知∁RA={x|x≤-1或x≥2},
解不等式(ax-1)(x+2)≥0得x≤-2或x≥$\frac{1}{a}$,即B={x|x≤-2或x≥$\frac{1}{a}$},
∵B⊆∁RA,∴$\frac{1}{a}$≥2,解得0<a$≤\frac{1}{2}$.
点评 本题考查了集合的运算,对数函数的定义域,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2+\sqrt{5}}{5}$ | D. | $\frac{2-\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com