精英家教网 > 高中数学 > 题目详情
3.若实数x,y满足(x-3y)+(2x+3y)i=5+i,则x+y=1.

分析 实数x,y满足(x-3y)+(2x+3y)i=5+i利用复数相等的条件求出x、y,然后求x+y的值.

解答 解:因为实数x,y满足(x-3y)+(2x+3y)i=5+i,可得 $\left\{\begin{array}{l}{x-3y=5}\\{2x+3y=1}\end{array}\right.$
所以x=2,y=-1
所以x+y=1
故答案为:1.

点评 本题考查复数的基本概念,考查复数相等,计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.经过两点A(2,1),B(1,m)的直线的倾斜角为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将一个周长为18的矩形,以一边为侧棱,折成一个正三棱柱(底面为正三角形,侧棱与底面垂直),当这个正三棱柱的体积最大时,它的外接球的半径为$\frac{\sqrt{129}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线过点P(3,1),且与以A(4,3),B(5,2)为端点的线段AB相交,则直线l的斜率的取值范围为[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2+bx+2,g(x)=f(f(x)),若f(x)与g(x)有相同的值域,则实数b的取值范围是b≥4或b≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=x2-a|x-1|+b(a>0,b>-1).
(1)若b=0,a>2,求f(x)在区间[0,2]内的最小值m(a);
(2)若f(x)在区间[0,2]内不同的零点恰有两个,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥A-BCD中,AB⊥平面ACD,AC=AD=2,AB=4,CD=2$\sqrt{2}$,则三棱锥A-BCD外接球的表面积与内切球表面积的比为 (  )
A.$\frac{5}{2}$B.8C.24D.$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知tan(π+α)=-$\frac{1}{2}$,求下列各式的值.
(1)$\frac{2cos(π-α)-3sin(π+α)}{{4cos(α-2π)+cos(\frac{3π}{2}-α)}}$;    
(2)sin2α-2sinαcosα+4cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=2x+cosx,则y′等于(  )
A.2+cosxB.2-sinxC.2+sinxD.2x+sinx

查看答案和解析>>

同步练习册答案