精英家教网 > 高中数学 > 题目详情
14.将一个周长为18的矩形,以一边为侧棱,折成一个正三棱柱(底面为正三角形,侧棱与底面垂直),当这个正三棱柱的体积最大时,它的外接球的半径为$\frac{\sqrt{129}}{6}$.

分析 正三棱柱的底面边长为x,高为y,则3x+y=9,0<x<3,表示正三棱柱的体积,利用基本不等式求最值,能求出正三棱柱的外接球的半径.

解答 解:设正三棱柱的底面边长为x,高为y,则3x+y=9,0<x<3,
正三棱柱的体积V=$\frac{\sqrt{3}}{4}{x}^{2}y$=$\frac{3\sqrt{3}}{4}{x}^{2}(3-x)$
=3$\sqrt{3}$$•\frac{1}{2}x•\frac{1}{2}x•(3-x)$
≤3$\sqrt{3}$•($\frac{\frac{1}{2}x+\frac{1}{2}x+3-x}{3}$)3=3$\sqrt{3}$,
当且仅当x=2时,等号成立,此时y=3,
可知正三棱柱的外接球的球心是其上下底面中心连线的中点,
则半径为r=$\sqrt{(\frac{2\sqrt{3}}{3})^{2}+(\frac{3}{2})^{2}}$=$\sqrt{\frac{43}{12}}$=$\frac{\sqrt{129}}{6}$.
故答案为:$\frac{\sqrt{129}}{6}$.

点评 本题考查外接球的半径的最大值的求法,是中档题,解题时要认真审,注意基本不等式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设a=cos420°,函数f(x)=ax,则f(log2$\frac{1}{6}$)的值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正方形ABCD,E是边AB的中点,将△ADE沿DE折起至A′DE,如图所示,若A′CD为正三角形,则ED与平面A′DC所成角的余弦值是$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四面体ABCD的外接球的半径为2,过棱AB作该球的截面,则截面面积的最小值为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{8π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱柱ABC一A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为2$\sqrt{6}$,AB=2,AC=1,∠BAC=60°,则此球的体积等于(  )
A.36πB.72πC.144πD.288π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.经过点P($\frac{1}{2}$,0)且与双曲线4x2-y2=1只有一个交点的直线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)若关于x的不等式-$\frac{1}{2}{x^2}$+2x>mx的解集为(0,2),求m的值.
(2)在△ABC中,sinA=$\frac{5}{13}$,cosB=$\frac{3}{5}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足(x-3y)+(2x+3y)i=5+i,则x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=$\sqrt{2}$,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD的中点.
(I)求证:平面PAB⊥平面PAD;
(Ⅱ)求二面角B-PC-D平面角的余弦值.

查看答案和解析>>

同步练习册答案