精英家教网 > 高中数学 > 题目详情
16.袋子里有两个不同的红球和两个不同的白球,从中任意取两个球,则这两个球颜色不相同的概率为$\frac{2}{3}$ .

分析 从中任取两个球共有红1红2,红1白1,红1白2,红2白1,红2白2,白1白2,共6种取法,其中颜色不相同只有4种,根据概率公式计算即可.

解答 解:从中任取两个球共有:
红1红2,红1白1,红1白2,红2白1,
红2白2,白1白2,共6种取法,其中颜色不相同只有4种,
故从中任取两个球,则这两个球颜色不相同的概率:
P=$\frac{4}{6}$=$\frac{2}{3}$;
故答案为:$\frac{2}{3}$.

点评 本题考查了古典概型概率的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则算筹式表示的数字为368.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,直线:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(为参数).写出曲线C的参数方程,直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,首项不为零,且an=$\sqrt{3}$an-1(n∈N*,n≥2),Sn为{an}的前n项和,令Tn=$\frac{10{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,则Tn的最大值为2+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设平面α的法向量为(1,-2,2),平面β的法向量为(2,λ,4),若α∥β,则λ=(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中.以原点为极点,x轴的正半轴为极轴建立极坐标系已知曲线C:pcos2θ=2asinθ(a>0)过点P(-4,-2)的直线l的参数方程为$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)直线l与曲线C分别交于点M,N.
(1)写出C的直角坐标方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.流程图如图所示的流程图的运行结果是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义R在上的偶函数,且f(x+1)=-f(x),若f(x)在[-1,0]上单调递减,则f(x)在[1,3]上是(  )
A.增函数B.减函数C.先增后减的函数D.先减后增的函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,椭圆C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).
(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;
(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案