精英家教网 > 高中数学 > 题目详情
5.线段AD、BE分别时边长为2的等边三角形ABC在边BC、AC边上的高,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

分析 建立平面直角坐标系,求出A,D,E的坐标,得到$\overrightarrow{AD}$、$\overrightarrow{BE}$的坐标,从而求出$\overrightarrow{AD}$•$\overrightarrow{BE}$的值即可.

解答 解:以B为原点,$\overrightarrow{BC}$为x轴的正方向建立坐标系,
如图示:

等边三角形的边长是2,
故A(1,$\sqrt{3}$),D(1,0),E($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{AD}$=(0,-$\sqrt{3}$),$\overrightarrow{BE}$=($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{AD}$•$\overrightarrow{BE}$=0×$\frac{3}{2}$-$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=-$\frac{3}{2}$,
故选:A.

点评 本题考查了平面向量数量积的运算,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在区间[-2,1]上随机选一个数x,使得函数f(x)=log2(1-x2)有意义的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某水稻品种的单株稻穗颗粒数X服从正态分布N(200,102),则P(X>190)=0.8413.
(附:若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow{b}$)(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了参加2016年全市“五•四”文艺汇演,某高中从校文艺队160名学生中抽取20名学生参加排练,现采用等距抽取的方法,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126号,则第1组中用抽签的方法确定的号码是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanθ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={1,2,3,5},B={2,3,6},则A∪B={1,2,3,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,若存在m∈R,使得向量4$\overrightarrow{a}$-m$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$的夹角也为θ,则cosθ的最小值是-1.

查看答案和解析>>

同步练习册答案