精英家教网 > 高中数学 > 题目详情
15.在区间[-2,1]上随机选一个数x,使得函数f(x)=log2(1-x2)有意义的概率为$\frac{2}{3}$.

分析 根据函数f(x)有意义求出x的范围,结合几何概型的概率公式进行计算即可.

解答 解:要使函数f(x)有意义,由1-x2>0得-1<x<1,
则在区间[-2,1]上随机选一个数x,使得函数f(x)=log2(1-x2)有意义的概率P=$\frac{1-(-1)}{1-(-2)}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题主要考查几何概型的概率的计算,根据函数成立的条件,求出x的范围是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在锐角三角形ABC中,∠A=$\frac{π}{4}$,AC=$\sqrt{3}$,BC=$\sqrt{2}$,BD=$\frac{3\sqrt{2}}{5}$;
(1)求∠ABC;
(2)求CD的长度;
(3)求sinD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°,PA⊥面ABCD,且PA=3.E为PD中点,F在棱PA上,且AF=1
(Ⅰ)求证:CE∥面BDF;
(Ⅱ)求三棱锥P-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.
(Ⅰ)求证:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)当三棱锥C-PBD的体积等于$\frac{{\sqrt{3}}}{2}$时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-2,1)的密度曲线)的点的个数的估计值为(  )
[附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,
P(μ-2σ<X<μ+2σ)=0.9544,
P(μ-3σ<X<μ+3σ)=0.9974].
A.430B.215C.2718D.1359

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于函数y=F(x),若在其定义域内存在x0,使得x0•F(x0)=1成立,则称x0为函数F(x)的“反比点”.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{(x-1)^2}$-1
(1)求证:函数f(x)具有“反比点”,并讨论函数f(x)的“反比点”个数;
(2)若x≥1时,恒有x•f(x)≤λ(g(x)+x)成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(1+x)2n,g(x)=(1-x)2n.求证:
(1)C2n1+2C2n2+3C2n3+…+2nC2n2n=n22n
(2)(Cn02+(Cn12+(Cn22+…+(Cnn2=C2nn
(3)f(x)+g(x)<4n,其中|x|<1,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(2+$\sqrt{x}$-$\frac{1}{{x}^{2016}}$)10的展开式中,x4项的系数为180(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.线段AD、BE分别时边长为2的等边三角形ABC在边BC、AC边上的高,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案