(本小题满分12分)
在△ABC中,角A、B、C的对边分别为、、,且满足.
(1)求角B的大小;
|
(1) (2) 当时,取得最小值0.
解析试题分析:解:(1)由正弦定理,有 , ,
代入(2a-c)cosB=bcosC,得(2sinA-sinC)cosB="sinBcosC."
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)
∵A+B+C=π,∴2sinAcosB="sinA."
∵0<A<π,∴sinA≠0.
∴cosB=.
∵0<B<π,∴B=.
(2)=-sinA+1
由B=得A∈(0,)
所以,当时,取得最小值0.
考点:解三角形
点评:解决的关键是根据已知的边角关系化简变形,结合正弦定理和来得到结论,同时结合向量的数量积来求解最值,属于基础题。
科目:高中数学 来源: 题型:解答题
在△ABC中,角A,B,C所对的边长分别是a,b,c.(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;(2)若△ABC的面积S = 3,且c =,C =,求a,b的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某货轮在A处看灯塔B在货轮的北偏东的方向上,距离为海里,在A处看灯塔C在货轮的北偏西的方向上,距离为海里,货轮由A处向正北航行到D处时,再看灯塔B在南偏东方向上,求:
(1)AD的距离;
(2)CD的距离。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com