精英家教网 > 高中数学 > 题目详情
1.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(Ⅰ)求编号和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由;
(Ⅲ)如果甲摸出球后不放回,则游戏对谁有利?

分析 (Ⅰ)设“两数之和为6”为事件A,利用列举法能求出编号和为6的概率.
(Ⅱ)这种游戏规则不公平.设甲胜为事件B,乙胜为事件C,利用列举法求出甲胜的概率,从而得到乙胜的概率,由P(B)≠P(C),得这种游戏规则不公平.
(Ⅲ)设甲胜为事件D,乙胜为事件E,利用列举法能求出P(D),P(E),由P(D)<P(E),得到对乙有利.

解答 解:(Ⅰ)设“两数之和为6”为事件A,事件A包含的基本事件有:
(1,5),(2,4),(3,3),(4,2),(5,1),共5个,
又甲、乙二人取出的数字共有5×5=25种等可能结果,
∴P(A)=$\frac{5}{25}=\frac{1}{5}$,
编号和为6的概率为$\frac{1}{5}$.
(Ⅱ)这种游戏规则不公平.
设甲胜为事件B,乙胜为事件C,则甲胜即两数之和为偶数包含的基本事件个数为13个:
(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),
(3,5),(4,2),(4,4),(5,1),(5,3),(5,5),
∴甲胜的概率P(B)=$\frac{13}{25}$,
从而乙胜的概率P(C)=1-$\frac{13}{25}$=$\frac{12}{25}$,
∵P(B)≠P(C),∴这种游戏规则不公平.
(Ⅲ)设甲胜为事件D,乙胜为事件E,则甲胜即两数字之和为偶数所包含的基本事件数为8个:
(1,3),(1,5),(2,4),(3,1),(3,5),(4,2),(5,1),(5,3),
又甲、乙二人取出的数字共有5×4=20种等可能的结果,
∴P(D)=$\frac{8}{20}$=$\frac{2}{5}$,P(E)=$\frac{3}{5}$,P(D)<P(E),对乙有利.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意列举法、对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.(x-$\frac{1}{x\sqrt{x}}$)n(n∈N+)的展开式中常数项为10,则(x-$\frac{1}{x\sqrt{x}}$)n的展开式中的有理项系数和为(  )
A.10B.15C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知cosα=$\frac{\sqrt{5}}{5}$,cos(α+β)=-$\frac{\sqrt{10}}{10}$,且0<β<α<$\frac{π}{2}$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.
(1)证明:不论点M如何选取,直线MN都通过一定点S;
(2)当$|AM|=\frac{1}{3}|AB|$时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使$\frac{1}{|AG|}+\frac{1}{|AH|}$=$\frac{2}{|AK|}$求点K的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+2{x}^{2}-x,0<x<1}\\{lnx,x≥1}\end{array}\right.$,对任意t∈(0,+∞),不等式f(t)<kt恒成立,则实数k的取值范围是$(\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.若p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件
B.若p为:?x∈R,x2+2x≤0则¬p为:?x∈R,x2+2x>0
C.命题p为真命题,命题q为假命题.则命题p∧(¬q),(¬p)∨q都是真命题
D.命题“若¬p,则q”的逆否命题是“若p,则¬q”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若全集U={x|0≤x<6,x∈N},集合A={1,3,5},B={x|x2+4=5x},则∁UA∪∁UB等于(  )
A.{2,3,4,5}B.{0,2}C.{0,2,3,4,5}D.{0,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.写出(x${\;}^{6}+\frac{1}{x\sqrt{x}}$)5的展开式中常数项:5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线${x^2}=-\frac{1}{4}y$的焦点坐标是(  )
A.(-1,0)B.(-2,0)C.$(0,-\frac{1}{8})$D.$(0,-\frac{1}{16})$

查看答案和解析>>

同步练习册答案