精英家教网 > 高中数学 > 题目详情
17.已知x=log52,y=ln2,z=${2}^{\frac{1}{2}}$,则下列结论正确的是(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵x=log52<$lo{g}_{5}\sqrt{5}$=$\frac{1}{2}$,1>y=ln2$>ln\sqrt{e}$=$\frac{1}{2}$,z=${2}^{\frac{1}{2}}$>1,
∴x<y<z.
故选:A.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=xcosx-\frac{a}{x}sinx-sinx,x∈({-kπ,0})∪({0,kπ})$(其中k为正整数,a∈R,a≠0),则f(x)的零点个数为(  )
A.2k-2B.2kC.2k-1D.与a有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,且该几何体的体积是12,则正视图中的x的值是(  )
A.3B.4C.9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知不等式x2-ax+a-2>0的解集为(-∞,x1)∪(x2+∞),其中x1<0<x2,则${x_1}+{x_2}+\frac{2}{x_1}+\frac{2}{x_2}$的最大值为(  )
A.$\frac{3}{2}$B.0C.2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={x|x(x-3)≤0,x∈N},B={-1,0,1},则集合A∩B为(  )
A.{-1,0}B.{1}C.{0,1}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从3男1女4名学生中,随机抽取2名学生组成小组代表班级参加学校的比赛活动,则该小组中有女生的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-c,0),上顶点为B,若直线y=$\frac{c}{b}$x与FB平行,则椭圆C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图及相关数据如图所示,则该几何体的体积为(  )
A.B.$\frac{8}{3}$πC.$\frac{4}{3}$πD.$\frac{π}{3}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB.

查看答案和解析>>

同步练习册答案