精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an},满足a4+a8=8,则此数列的前11项的和S11=(  )
A.11B.22C.33D.44

分析 利用等差数列的通项公式和前n项和公式求解.

解答 解:∵等差数列{an},满足a4+a8=8,
∴此数列的前11项的和:
S11=$\frac{11}{2}$(a1+a11)=$\frac{11}{2}$(a4+a8)=$\frac{11}{2}$×8=44.
故选:D.

点评 本题考查等差数列的前11项和的求法,是基础题,解题时要注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.数列{an}的通项公式为${a_n}=-2{n^2}+λn(n∈{N^*},λ∈R)$,若{an}是递减数列,则λ的取值范围是(  )
A.(-∞,4)B.(-∞,4]C.(-∞,6)D.(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x1,x2是函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c的两个极值点.若x1∈(-2,-1),x2∈(-1,0),则2a+b的取值范围是(2,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题:若数列{an}(an>0)为等比数列,且am=a,an=b(m≠n,m,n∈N*),则am+n=$\root{n-m}{\frac{{b}^{n}}{{a}^{m}}}$;现已知等差数列{bn},且bm=a,bn=b,(m≠n,m,n∈N*).若类比上述结论,则可得到bm+n=(  )
A.$\frac{bn-am}{n-m}$B.$\frac{bm-an}{n-m}$C.$\frac{bn+am}{n+m}$D.$\frac{bm+an}{n+m}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.三元一次方程x+y+z=13的非负整数解的个数有105.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,复数z的实部记作 Re(z),如z=-2+3i,则 Re(z)=-2.已知复数z=1+i,某同学做了如下运算:z2=(1+i)2=2i,Re(z2)=0
         z3=(1+i)3=-2+2i,Re(z3)=-2
         z4=(1+i)4=-4,Re(z4)=-4
         z5=(1+i)5=-4-4i,Re(z5)=-4
据此归纳推理可知 Re(z2017)等于(  )
A.22017B.-22017C.21008D.-21008

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若存在X满足不等式|X-4|+|X-3|<a,则a的取值范围是(  )
A.a≥1B.a>1C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(I)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
( II)讨论函数f(x)的单调性;
(III)当a=l时,对?m,n∈[-3,0],|f(m)-f(n)|≤M恒成立,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=a-$\frac{b}{x}$-lnx(a,b∈R).
(Ⅰ)若函数f(x)在[1,e]上单调递增(e为自然对数的底数),求b的取值范围;
(Ⅱ)若b=1,是否存在实数a使得f(x)恰有两个不同零点,若存在,求出a的取值集合;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案