16£®Ä³ÊÐA¡¢BÁ½ËùÖÐѧµÄѧÉú×é¶Ó²Î¼Ó±çÂÛÈü£¬AÖÐÑ§ÍÆ¼öÁË3ÃûÄÐÉú¡¢2ÃûÅ®Éú£¬BÖÐÑ§ÍÆ¼öÁË3ÃûÄÐÉú¡¢4ÃûÅ®Éú£¬Á½Ð£ËùÍÆ¼öµÄѧÉúÒ»Æð²Î¼Ó¼¯Ñµ£®ÓÉÓÚ¼¯Ñµºó¶ÓԱˮƽÏ൱£¬´Ó²Î¼Ó¼¯ÑµµÄÄÐÉúÖÐËæ»ú³éÈ¡3ÈË£¬Å®ÉúÖÐËæ»ú³éÈ¡3ÈË×é³É´ú±í¶Ó£®
£¨¢ñ£©ÇóAÖÐѧÖÁÉÙÓÐ1ÃûѧÉúÈëÑ¡´ú±í¶ÓµÄ¸ÅÂÊ£»
£¨¢ò£©Ä³³¡±ÈÈüǰ£¬´Ó´ú±í¶ÓµÄ6Ãû¶ÓÔ±ÖÐËæ»ú³éÈ¡4È˲ÎÈü£¬ÉèX±íʾ²ÎÈüµÄÄÐÉúÈËÊý£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©Çó³öAÖÐѧÖÁÉÙÓÐ1ÃûѧÉúÈëÑ¡´ú±í¶ÓµÄ¶ÔÁ¢Ê¼þµÄ¸ÅÂÊ£¬È»ºóÇó½â¸ÅÂʼ´¿É£»
£¨¢ò£©Çó³öX±íʾ²ÎÈüµÄÄÐÉúÈËÊýµÄ¿ÉÄÜÖµ£¬Çó³ö¸ÅÂÊ£¬µÃµ½XµÄ·Ö²¼ÁУ¬È»ºóÇó½âÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬²Î¼Ó¼¯ÑµµÄÄС¢Å®Ñ§Éú¹²ÓÐ6ÈË£¬²ÎÈüѧÉúÈ«´ÓBÖгé³ö£¨µÈ¼ÛÓÚAÖÐûÓÐѧÉúÈëÑ¡´ú±í¶Ó£©µÄ¸ÅÂÊΪ£º$\frac{{C}_{3}^{3}{C}_{4}^{3}}{{C}_{6}^{3}{C}_{6}^{3}}$=$\frac{1}{100}$£¬Òò´ËAÖÐѧÖÁÉÙÓÐ1ÃûѧÉúÈëÑ¡´ú±í¶ÓµÄ¸ÅÂÊΪ£º1-$\frac{1}{100}$=$\frac{99}{100}$£»
£¨¢ò£©Ä³³¡±ÈÈüǰ£¬´Ó´ú±í¶ÓµÄ6Ãû¶ÓÔ±ÖÐËæ»ú³éÈ¡4È˲ÎÈü£¬X±íʾ²ÎÈüµÄÄÐÉúÈËÊý£¬
ÔòXµÄ¿ÉÄÜȡֵΪ£º1£¬2£¬3£¬
P£¨X=1£©=$\frac{{C}_{3}^{1}{C}_{3}^{3}}{{C}_{6}^{4}}$=$\frac{1}{5}$£¬
P£¨X=2£©=$\frac{{C}_{3}^{2}{C}_{3}^{2}}{{C}_{6}^{4}}$=$\frac{3}{5}$£¬
P£¨X=3£©=$\frac{{C}_{3}^{3}{C}_{3}^{1}}{{C}_{6}^{4}}$=$\frac{1}{5}$£®
XµÄ·Ö²¼ÁУº

 X 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
ºÍÊýѧÆÚÍûEX=1¡Á$\frac{1}{5}+2¡Á\frac{3}{5}+3¡Á\frac{1}{5}$=2£®

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬ÆÚÍûµÄÇ󷨣¬¿¼²é¹Åµä¸ÅÐ͸ÅÂʵÄÇ󷨣¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ABºÍBC·Ö±ðÓëÔ²OÏàÇÐÓÚµãD¡¢C£¬AC¾­¹ýÔ²ÐÄO£¬ÇÒBC=2OC£®
ÇóÖ¤£ºAC=2AD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬ÈýÀâ×¶A-BCDÖУ¬AB=AC=BD=CD=3£¬AD=BC=2£¬µãM£¬N·Ö±ðÊÇAD£¬BCµÄÖе㣬ÔòÒìÃæÖ±ÏßAN£¬CMËù³ÉµÄ½ÇµÄÓàÏÒÖµÊÇ$\frac{7}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É躯Êýf£¨x£©=|x2-a|£¨a¡ÊR£©
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èç¹û´æÔÚʵÊým£¬n£¨m£¼n£©ÊǺ¯Êýf£¨x£©ÔÚ[m£¬n]ÉϵÄÖµÓòΪ[m£¬n]£¬Ôò³ÆÇø¼ä[m£¬n]ÊǺ¯Êýf£¨x£©µÄºÍÐ³Çø¼ä£¬Éèa£¾0£¬Èôº¯Êýf£¨x£©Ç¡ºÃÓÐÁ½¸öºÍÐ³Çø¼ä£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÈýÀą̂DEF-ABCÖУ¬AB=2DE£¬G£¬H·Ö±ðΪAC£¬BCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºBD¡ÎÆ½ÃæFGH£»
£¨¢ò£©ÈôCF¡ÍÆ½ÃæABC£¬AB¡ÍBC£¬CF=DE£¬¡ÏBAC=45¡ã£¬ÇóÆ½ÃæFGHÓëÆ½ÃæACFDËù³ÉµÄ½Ç£¨Èñ½Ç£©µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ¡÷ABCÖУ¬ÒÑÖªAB=2£¬AC=3£¬A=60¡ã£®
£¨1£©ÇóBCµÄ³¤£»
£¨2£©Çósin2CµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½â²»µÈʽx+|2x+3|¡Ý2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÅ×ÎïÏßC1£ºx2=4yµÄ½¹µãFÒ²ÊÇÍÖÔ²C2£º$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µã£®C1ÓëC2µÄ¹«¹²ÏÒ³¤Îª2$\sqrt{6}$£®
£¨¢ñ£©ÇóC2µÄ·½³Ì£»
£¨¢ò£©¹ýµãFµÄÖ±ÏßlÓëC1ÏཻÓÚA¡¢BÁ½µã£¬ÓëC2ÏཻÓÚC¡¢DÁ½µã£¬ÇÒ$\overrightarrow{AC}$Óë$\overrightarrow{BD}$ͬÏò£®
£¨1£©Èô|AC|=|BD|£¬ÇóÖ±ÏßlµÄбÂÊ£»
£¨2£©ÉèC1ÔÚµãA´¦µÄÇÐÏßÓëxÖáµÄ½»µãΪM£¬Ö¤Ã÷£ºÖ±ÏßlÈÆµãFÐýתʱ£¬¡÷MFD×ÜÊǶ۽ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈçÌâͼ£¬Ô²OµÄÏÒAB£¬CDÏཻÓÚµãE£¬¹ýµãA×÷Ô²OµÄÇÐÏßÓëDCµÄÑÓ³¤Ïß½»ÓÚµãP£¬ÈôPA=6£¬AE=9£¬PC=3£¬CE£ºED=2£º1£¬ÔòBE=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸