精英家教网 > 高中数学 > 题目详情
12.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(2)的x的取值范围是(  )
A.$({-\frac{1}{2},\frac{2}{3}})$B.$({-\frac{1}{2},\frac{3}{2}})$C.$({-\frac{1}{2},\frac{1}{3}})$D.$({\frac{1}{2},2})$

分析 根据f(x)是偶函数,可得f(2x-1)=f(|2x-1|),从而将f(2x-1)<f(3)转化成f(|2x-1|)<f(2),然后根据函数的单调性建立关系式|2x-1|<2,解之即可.

解答 解:根据题意,f(x)是偶函数,则f(2x-1)=f(|2x-1|),
又由函数f(x)在区间[0,+∞)上单调递增,
则f(2x-1)<f(2)⇒f(|2x-1|)<f(2)⇒|2x-1|<2,
即-2<2x-1<2,
解可得-$\frac{1}{2}$<x<$\frac{3}{2}$;
即(-$\frac{1}{2}$,$\frac{3}{2}$);
故选:B.

点评 本题考查函数的奇偶性与单调性的综合应用,涉及绝对值不等式的解法,关键是将f(2x-1)<f(2)转化成|2x-1|<2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,Sn=n2an,求其通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设实二次函数f(x)=ax2+bx+c,a>0,己知有三个互不相同的整数n1,n2,n3使得|f(ni)|≤100,i=1,2,3,求证:
(1)存在实数x0,满足:|f(x0)|≤100且|f(x0+1)|≤100.
(2)a≤200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.分形几何学是美籍法国数学家伯努瓦•B•曼德尔布罗特(Benoit B.Mandelbrot)在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.右图按照的分形规律生长成一个树形图,则第13行的实心圆点的个数是(  )
A.55个B.89个C.144个D.233个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=2sin(4x-\frac{π}{6})+1$的最小正周期为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{1}{a}$<$\frac{1}{b}$<0,则下列结论错误的是(  )
A.lg(a2)<lg(ab)B.a2<b2C.a3>b3D.ab>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,(i+1)(i+2)=(  )
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知 $A({cos^2}x,sinx),B(1,cosx),设f(x)=\overrightarrow{OA}•\overrightarrow{OB},O为坐标原点$,
(1)求函数f(x)的最小正周期;
(2)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,求函数的单调增区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,以向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$为边作?AOBD,又$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

同步练习册答案