分析 (1)根据向量坐标的运用,求出f(x)的解析式,化简,即可求f(x)的最小正周期;
(2)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,求出内层函数范围,结合三角函数的性质求函数的单调增区间和最值.
解答 解:由题意,f(x)=$\overrightarrow{OA}•\overrightarrow{OB}$=cos2x+sinxcosx=$\frac{1}{2}$sin2x+$\frac{1}{2}$sin2x+$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x$+\frac{π}{4}$)$+\frac{1}{2}$.
∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,
那么2x$+\frac{π}{4}$∈[$-\frac{3π}{4}$,$\frac{5π}{4}$],
∴$-\frac{π}{2}$≤2x$+\frac{π}{4}$≤$\frac{π}{2}$,即$-\frac{3π}{8}$≤x≤$\frac{π}{8}$,函数f(x)是单调性递增,
故得函数的单调增区间为[$-\frac{3π}{8}$,$\frac{π}{8}$].
当$-\frac{π}{2}$=2x$+\frac{π}{4}$时,函数f(x)取得最小值为$-1×\frac{\sqrt{2}}{2}+\frac{1}{2}$=$\frac{1-\sqrt{2}}{2}$;
当2x$+\frac{π}{4}$=$\frac{π}{2}$时,函数f(x)取得最大值为$\frac{1+\sqrt{2}}{2}$.
点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | (-2,0) | C. | (0,1) | D. | (1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{1}{2},\frac{2}{3}})$ | B. | $({-\frac{1}{2},\frac{3}{2}})$ | C. | $({-\frac{1}{2},\frac{1}{3}})$ | D. | $({\frac{1}{2},2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{12}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $-2\sqrt{3}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意x∈R,ex-x2+ln(x2+2)≤0 | B. | 存在x∈R,ex-x2+ln(x2+2)>0 | ||
| C. | 不存在ex-x2+ln(x2+2)≤0 | D. | 存在x∈R,ex-x2+ln(x2+2)≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{24}{7}$ | B. | -$\frac{24}{7}$或-$\frac{7}{24}$ | C. | -$\frac{7}{24}$ | D. | $\frac{24}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{6}}}{9}$ | D. | $-\frac{{\sqrt{6}}}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com