精英家教网 > 高中数学 > 题目详情
16.若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=$\sqrt{3}$,向量$\overrightarrow{AB}$与$\overrightarrow{CA}$的夹角为$\frac{π}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.6D.-6

分析 根据题意,由向量夹角的定义分析可得向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角即角A的值,由数量积的计算公式计算即可得答案.

解答 解:根据题意,向量$\overrightarrow{AB}$与$\overrightarrow{CA}$的夹角为$\frac{π}{3}$,
则向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角即角A=π-$\frac{π}{3}$=$\frac{2π}{3}$,
则$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$||$\overrightarrow{AC}$|cosA=4×$\sqrt{3}$×cos$\frac{2π}{3}$=-2$\sqrt{3}$;
故选:B.

点评 本题考查平面向量数量积的计算,注意向量的夹角的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在正方形ABCD-A1B1C1D1中,直线A1D与BC1的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=2sin(4x-\frac{π}{6})+1$的最小正周期为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,(i+1)(i+2)=(  )
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)计算:${({{m^{\frac{1}{4}}}{n^{-\frac{3}{8}}}})^8}$.
(2)比较大小:log0.51.8,log0.52.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知 $A({cos^2}x,sinx),B(1,cosx),设f(x)=\overrightarrow{OA}•\overrightarrow{OB},O为坐标原点$,
(1)求函数f(x)的最小正周期;
(2)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,求函数的单调增区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设集合A={-2},B={x|ax+1=0},若A∩B=B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下结论正确的是(  )
A.若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点
B.函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点
C.若函数y=f(x)在x0处取得极值,且f′(x0)存在,则必有f′(x0)=0
D.若函数y=f(x)在x0处连续,则f′(x0)一定存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知a、b、c分别表示∠A、∠B、∠C所对边的长,若$(a+b+c)(c+b-a)=(2-\sqrt{3})bc$,则∠A=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案