精英家教网 > 高中数学 > 题目详情
6.在△ABC中,已知a、b、c分别表示∠A、∠B、∠C所对边的长,若$(a+b+c)(c+b-a)=(2-\sqrt{3})bc$,则∠A=(  )
A.30°B.60°C.120°D.150°

分析 由条件里用余弦定理求得cosA的值,可得A的值.

解答 解:∵△ABC中,由(a+b+c)(c+b-a)=(2-$\sqrt{3}$)bc,可得:b2+c2-a2=-$\sqrt{3}$bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{\sqrt{3}}{2}$,
∵A∈(0,180°),
∴A=150°,
故选:D.

点评 本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=$\sqrt{3}$,向量$\overrightarrow{AB}$与$\overrightarrow{CA}$的夹角为$\frac{π}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两直线3x+y-1=0与6x+my+1=0平行,则它们之间的距离为(  )
A.2B.$\frac{{3\sqrt{10}}}{10}$C.$\frac{{2\sqrt{13}}}{13}$D.$\frac{{3\sqrt{10}}}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ex-1,g(x)=ln(x+1),直线l与y=f(x)的图象相切,与y=g(x)的图象也相切,则直线的l方程是y=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).设a=2,b=$\frac{1}{2}$.
(1)求方程f(x)=2的根.
(2)对任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$0<α<\frac{π}{2},\frac{π}{2}<β<π$,$cos(α+\frac{π}{4})=\frac{1}{3}$,$sin(\frac{β}{2}+\frac{π}{4})=\frac{{\sqrt{3}}}{3}$,则$cos(α-\frac{β}{2})$=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{9}$D.$-\frac{{\sqrt{6}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow a$=(x-$\sqrt{2}$,y),$\overrightarrow b$=(x+$\sqrt{2}$,y).动点M(x,y)满足$|{\overrightarrow a}|+|{\overrightarrow b}|$=2$\sqrt{3}$
(1)求点M的轨迹C的方程;
(2)直线l与C交于A,B两点,坐标原点O到l得距离为$\frac{{\sqrt{3}}}{2}$,求△ABO面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知三个数成等差数列,其和为126,另外三个数成等比数列,把这两个数列的对应项依次相加,分别得到85,76,84,求这两个数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an},且a6+a8=4,则a6(a6+2a8)a82的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案