精英家教网 > 高中数学 > 题目详情
10.在正方形ABCD-A1B1C1D1中,直线A1D与BC1的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 由A1D∥B1C,可得直线A1D与BC1的夹角就是B1C与BC1的夹角,根据正方体的性质可得答案.

解答 解:如图,因为A1D∥B1C,∴直线A1D与BC1的夹角就是B1C与BC1的夹角,
∵四边形BCC1B1是正方形,∴B1C⊥BC1
直线A1D与BC1的夹角为$\frac{π}{2}$.
故选:A

点评 本题考查了异面直线的夹角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.向量$\overrightarrow a=(2,2),\overrightarrow b=(m,-1)$,若$\overrightarrow a$∥$\overrightarrow b$,则$\left|{\overrightarrow a+\overrightarrow b}\right|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为1830.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如果存在常数A,对于数列{an}中任意一项ai(i∈N*),A-ai也是数列{an}中的一项,称数列{an}具有D性质,常数A是它的D性系数.
(I)若数列:2,3,6,m(m>6)具有D性质,且它的D性系数为A,求m和A的值.
(II)已知等差数列{bn}共有101项,所有项之和是S,求证:数列{bn}具有D性质,并用S表示它的D性系数.
(III)对于一个不少于3项,且各项均为正整数的等比数列{cn},能否同时满足:①对于任意的正整数i,j,当i<j有,有ci<cj;②具有D性质.请给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,值域为(0,+∞)的是(  )
A.y=2${\;}^{\frac{1}{x}}$B.y=lg(x2+1)C.y=$\sqrt{(\frac{1}{2})^{x}-1}$D.y=($\frac{1}{5}$)2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|(x-1)(x+2)>0},集合B={x|1<2x+1<4},则A∩B等于(  )
A.(-2,1)B.(-2,0)C.(0,1)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
 同意 不同意  合计
 教师 1  
 女生  4 
 男生  2 
(1)请完成此统计表;
(2)试估计高二年级学生“同意”的人数;
(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$,若存在实数t,使得函数y=f(x)-t有4个不同的零点,则m的取值范围为($\frac{7}{2},\frac{16}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=$\sqrt{3}$,向量$\overrightarrow{AB}$与$\overrightarrow{CA}$的夹角为$\frac{π}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.6D.-6

查看答案和解析>>

同步练习册答案