精英家教网 > 高中数学 > 题目详情
12.向量$\overrightarrow a=(2,2),\overrightarrow b=(m,-1)$,若$\overrightarrow a$∥$\overrightarrow b$,则$\left|{\overrightarrow a+\overrightarrow b}\right|$=$\sqrt{2}$.

分析 通过向量共线求出m,然后利用坐标运算以及向量求模即可.

解答 解:因为$\overrightarrow a∥\overrightarrow b$,所以m=-1,$\overrightarrow a+\overrightarrow b=(1,1),\left|{\overrightarrow a+\overrightarrow b}\right|=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查向量共线以及向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知角α的终边在第四象限,且sinα=-$\frac{\sqrt{3}}{2}$,则tanα的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z满足z=i2017,则z的共轭复数$\overline{z}$的虚部是(  )
A.-1B.1C.0D.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{sinx}{x}$,则曲线y=f(x)在点M(2π,0)处的切线方程为y=$\frac{x}{2π}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{1}{2}$x2-cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=cos2x,若把f(x)的图象向左平移$\frac{π}{4}$个单位得到函数g(x)的图象,则g(x)的解析式为(  )
A.$g(x)=cos({2x+\frac{π}{4}})$B.g(x)=cos2xC.g(x)=-sin2xD.g(x)=-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,M是AD上一点.
(1)求证:AB⊥PM;
(2)若N是PB的中点,且AN∥平面PCM,求$\frac{AM}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=ax,x∈(-∞,1]的值域为(0,2),则a的值为(  )
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正方形ABCD-A1B1C1D1中,直线A1D与BC1的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案