分析 分m≤0和m>0分别画出函数y=f(x)的图象,把函数y=f(x)-t有4个不同的零点转化为函数y=f(x)的图象与y=t有4个不同交点列关于m的不等式组求解.
解答 解:当m≤0时,函数$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$的图象如图:![]()
不满足题意;
当m>0时,函数$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$的图象如图:![]()
要使函数y=f(x)-t有4个不同的零点,
则函数y=f(x)的图象与y=t有4个不同交点,
∴$\left\{\begin{array}{l}{4m-\frac{3}{4}{m}^{2}>0}\\{4m-{m}^{2}<\frac{m}{2}}\end{array}\right.$,解得$\frac{7}{2}<m<\frac{16}{3}$.
∴m的取值范围为:($\frac{7}{2},\frac{16}{3}$).
故答案为:($\frac{7}{2},\frac{16}{3}$).
点评 本题考查根的存在性与根的个数判断,考查数形结合的解题思想方法,正确画出函数图象是解答该题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 55个 | B. | 89个 | C. | 144个 | D. | 233个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点 | |
| B. | 函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点 | |
| C. | 若函数y=f(x)在x0处取得极值,且f′(x0)存在,则必有f′(x0)=0 | |
| D. | 若函数y=f(x)在x0处连续,则f′(x0)一定存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com