精英家教网 > 高中数学 > 题目详情
8.设集合A={-2},B={x|ax+1=0},若A∩B=B,求实数a的值.

分析 由A∩B=B,得B⊆A,当a=0时,B=∅,满足题意;当a≠0时,B={-$\frac{1}{a}$},若使B⊆A,则-$\frac{1}{a}$=-2,由此能出a.

解答 解:∵A∩B=B,∴B⊆A,
当a=0时,B=∅,B⊆A,A∩B=B,满足题意;
当a≠0时,B={-$\frac{1}{a}$},若使B⊆A,则-$\frac{1}{a}$=-2,即a=$\frac{1}{2}$.
综上所述:a=0或a=$\frac{1}{2}$.

点评 本题考查实数值的求法,考查集合的交集、子集等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
 同意 不同意  合计
 教师 1  
 女生  4 
 男生  2 
(1)请完成此统计表;
(2)试估计高二年级学生“同意”的人数;
(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合M满足{1,2}⊆M⊆{1,2,3,4,5},则集合M的个数为8个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=$\sqrt{3}$,向量$\overrightarrow{AB}$与$\overrightarrow{CA}$的夹角为$\frac{π}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x},(x>1)}\\{{x^2}-6x+9,(x≤1)}\end{array}}\right.$,则不等式f(x)>f(1)解集是{x|x<1或x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题:“对任意x∈R,ex-x2+ln(x2+2)>0”的否定是(  )
A.任意x∈R,ex-x2+ln(x2+2)≤0B.存在x∈R,ex-x2+ln(x2+2)>0
C.不存在ex-x2+ln(x2+2)≤0D.存在x∈R,ex-x2+ln(x2+2)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b,c∈R,命题p:a<10,命题q:lg a<1,则p是q的(  )
A.充分必要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两直线3x+y-1=0与6x+my+1=0平行,则它们之间的距离为(  )
A.2B.$\frac{{3\sqrt{10}}}{10}$C.$\frac{{2\sqrt{13}}}{13}$D.$\frac{{3\sqrt{10}}}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow a$=(x-$\sqrt{2}$,y),$\overrightarrow b$=(x+$\sqrt{2}$,y).动点M(x,y)满足$|{\overrightarrow a}|+|{\overrightarrow b}|$=2$\sqrt{3}$
(1)求点M的轨迹C的方程;
(2)直线l与C交于A,B两点,坐标原点O到l得距离为$\frac{{\sqrt{3}}}{2}$,求△ABO面积的最大值.

查看答案和解析>>

同步练习册答案