分析 Sn=n2an,可得n≥2时,an=Sn-Sn-1,化为:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.利用an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1,即可得出.
解答 解:∵Sn=n2an,∴n≥2时,an=Sn-Sn-1=n2an-(n-1)2an-1,
化为:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n+1}$$•\frac{n-2}{n}•\frac{n-3}{n-1}$•…•$\frac{2}{4}•\frac{1}{3}$•$\frac{1}{2}$
=$\frac{1}{n(n+1)}$.
n=1时也成立.
∴an=$\frac{1}{n(n+1)}$.
点评 本题考查了数列递推关系、通项公式、“累乘求积方法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2-$\frac{2}{n+2}$ | B. | 3-$\frac{4n+6}{{n}^{2}+3n+2}$ | C. | $\frac{3}{2}-\frac{2n+3}{{n}^{2}+3n+2}$ | D. | 4-$\frac{4}{n+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 27 | 38 | 30 | 37 | 35 | 31 |
| 乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | (-2,0) | C. | (0,1) | D. | (1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{1}{2},\frac{2}{3}})$ | B. | $({-\frac{1}{2},\frac{3}{2}})$ | C. | $({-\frac{1}{2},\frac{1}{3}})$ | D. | $({\frac{1}{2},2})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com