9£®ÒÑÖªÊýÁÐ{an}£º$\frac{1}{2}$£¬$\frac{1}{3}$+$\frac{2}{3}$£¬$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$£¬¡­£¬$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+¡­+\frac{9}{10}$£¬¡­£¬Èôbn=$\frac{1}{{a}_{n}{a}_{n+2}}$£¬ÄÇôÊýÁÐ{bn}µÄǰnÏîºÍSnµÈÓÚ£¨¡¡¡¡£©
A£®2-$\frac{2}{n+2}$B£®3-$\frac{4n+6}{{n}^{2}+3n+2}$C£®$\frac{3}{2}-\frac{2n+3}{{n}^{2}+3n+2}$D£®4-$\frac{4}{n+2}$

·ÖÎö ÓÉÊýÁÐ{an}£º$\frac{1}{2}$£¬$\frac{1}{3}$+$\frac{2}{3}$£¬$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$£¬¡­£¬$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+¡­+\frac{9}{10}$£¬¡­£¬¿ÉµÃ{an}µÄͨÏ¼´¿ÉÇó{bn}µÄͨÏÀûÓÃÁÑÏîÏàÏû¿ÉµÃ{bn}µÄǰnÏîºÍSn£®

½â´ð ½â£ºÊýÁÐ{an}£º$\frac{1}{2}$£¬$\frac{1}{3}$+$\frac{2}{3}$£¬$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$£¬¡­£¬$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+¡­+\frac{9}{10}$£¬¡­£¬
¿ÉµÃ{an}µÄͨÏîan=$\frac{1+2+3+¡­n}{n+1}=\frac{n}{2}$£®
¡ßbn=$\frac{1}{{a}_{n}{a}_{n+2}}$£¬
¡à${b}_{n}=\frac{1}{\frac{n}{2}•\frac{n+2}{2}}$=$\frac{4}{n£¨n+2£©}$=2£¨$\frac{1}{n}-\frac{1}{n+2}$£©£®
¡àÊýÁÐ{bn}µÄǰnÏîºÍSn=2£¨1-$\frac{1}{3}$+$\frac{1}{2}-$$\frac{1}{4}$$+\frac{1}{3}$-$\frac{1}{5}$+¡­+$\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2}$£©
=2£¨$\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}$£©
=3-$\frac{4n+6}{{n}^{2}+3n+2}$
¹ÊÑ¡B

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½¡¢¡°ÁÑÏîÇóºÍ¡±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª{an}ΪµÈ±ÈÊýÁУ¬SnΪÆäǰnÏîºÍ£®a3-a1=15£¬a2-a1=5£¬ÔòS4=£¨¡¡¡¡£©
A£®75B£®80C£®155D£®160

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\frac{sinx}{x}$£¬ÔòÇúÏßy=f£¨x£©ÔÚµãM£¨2¦Ð£¬0£©´¦µÄÇÐÏß·½³ÌΪy=$\frac{x}{2¦Ð}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=cos2x£¬Èô°Ñf£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Ôòg£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®$g£¨x£©=cos£¨{2x+\frac{¦Ð}{4}}£©$B£®g£¨x£©=cos2xC£®g£¨x£©=-sin2xD£®g£¨x£©=-cos2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬µ×ÃæABCDΪ¾ØÐΣ¬MÊÇADÉÏÒ»µã£®
£¨1£©ÇóÖ¤£ºAB¡ÍPM£»
£¨2£©ÈôNÊÇPBµÄÖе㣬ÇÒAN¡ÎÆ½ÃæPCM£¬Çó$\frac{AM}{AD}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª$\overrightarrow{a}$=£¨$\sqrt{3}$£¬-1£©£¬$\overrightarrow{b}$=£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®Èô´æÔÚ²»Í¬Ê±ÎªÁãµÄʵÊýkºÍt£¬Ê¹x=4$\overrightarrow{a}$+£¨t2-3£©$\overrightarrow{b}$£¬y=-k$\overrightarrow{a}$+t$\overrightarrow{b}$£¬ÇÒx¡Íy£®Çók=f£¨t£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôº¯Êýy=ax£¬x¡Ê£¨-¡Þ£¬1]µÄÖµÓòΪ£¨0£¬2£©£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®2B£®$\frac{1}{2}$C£®$\sqrt{2}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãa1=$\frac{1}{2}$£¬Sn=n2an£¬ÇóÆäͨÏîan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Éèʵ¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¬a£¾0£¬¼ºÖªÓÐÈý¸ö»¥²»ÏàͬµÄÕûÊýn1£¬n2£¬n3ʹµÃ|f£¨ni£©|¡Ü100£¬i=1£¬2£¬3£¬ÇóÖ¤£º
£¨1£©´æÔÚʵÊýx0£¬Âú×㣺|f£¨x0£©|¡Ü100ÇÒ|f£¨x0+1£©|¡Ü100£®
£¨2£©a¡Ü200£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸