分析 由题意可得0<2A<$\frac{π}{2}$,且$\frac{π}{2}$<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得$\frac{b}{a}$=b=2cosA,根据cosA的范围确定出b范围即可.
解答 解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,
∴0<2A<$\frac{π}{2}$,且B+A=3A,
∴$\frac{π}{2}$<3A<π.
∴$\frac{π}{6}$<A<$\frac{π}{3}$,
∴$\frac{\sqrt{2}}{2}$<cosA<$\frac{\sqrt{3}}{2}$,
∵a=1,B=2A,
∴由正弦定理可得:$\frac{b}{a}$=b=$\frac{sin2A}{sinA}$=2cosA,
∴$\sqrt{2}$<2cosA<$\sqrt{3}$,
则b的取值范围为($\sqrt{2}$,$\sqrt{3}$).
故答案为:$(\sqrt{2},\sqrt{3})$.
点评 此题考查了正弦定理,余弦函数的性质在解三角形中的综合应用,考查了转化思想,解题的关键是确定出A的范围,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=lnx | B. | y=x3-x | C. | y=-$\frac{1}{x}$ | D. | y=ex-e-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 7或8 | C. | 8 | D. | 8或9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com