| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:由z=2x-y得y=2x-z
作出不等式组$\left\{\begin{array}{l}0≤x≤y\\ x+y≥2\\ 2x+y≤6\end{array}$,对应的平面区域如图(阴影部分):
平移直线y=2x-z
由图象可知当直线y=2x-z过点A时,直线y=2x-z的截距最小,此时z最大,
由$\left\{\begin{array}{l}{y=x}\\{2x+y=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2).
代入目标函数z=2x-y,
得z=2×2-2=2,
∴目标函数z=2x-y的最大值是2.
故选:B.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | -4 | D. | -8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2) | B. | (1,+∞) | C. | [-2,1] | D. | [-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 资金 | 单位产品所需资金 | 资金供应量 | |
| 空调机 | 洗衣机 | ||
| 成本 | 30 | 20 | 440 |
| 劳动力:工资 | 7 | 10 | 156 |
| 单位利润 | 10 | 8 | |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{75}{2}$ | B. | $\frac{{75\sqrt{3}}}{2}$ | C. | $\frac{{75\sqrt{2}}}{2}$ | D. | $\frac{{75\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com