精英家教网 > 高中数学 > 题目详情
11.在△ABC中,|$\overrightarrow{AB}}$|=|${\overrightarrow{AC}}$|=3,且$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=-17,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.-1B.-2C.-4D.-8

分析 把已知向量等式$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=-17变形,得到$\overrightarrow{AB}•\overrightarrow{BC}-|\overrightarrow{AC}{|}^{2}=-17$,代入|${\overrightarrow{AC}}$|=3得答案.

解答 解:由$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=-17,得$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{CA}•(\overrightarrow{AB}+\overrightarrow{BC})=-17$,
即$\overrightarrow{AB}•\overrightarrow{BC}-|\overrightarrow{AC}{|}^{2}=-17$,
∵|${\overrightarrow{AC}}$|=3,∴$\overrightarrow{AB}•\overrightarrow{BC}=-17+{3}^{2}=-8$.
故选:D.

点评 本题考查平面向量的数量积运算,考查数学转化思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$f(x)=sin(2x+\frac{π}{6})+\frac{1}{2}$
(1)用五点法完成下列表格,并画出函数f(x)在区间$[-\frac{π}{12},\frac{11π}{12}]$上的简图;
(2)若$x∈[-\frac{π}{6},\frac{π}{3}]$,函数g(x)=f(x)+m的最小值为2,试求处函数g(x)的最大值,指出x取值时,函数g(x)取得最大值.
x     
 2x+$\frac{π}{6}$     
 sin(2x+$\frac{π}{6}$)     
 f(x)     

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某糖果厂生产A、B两种糖果,A种糖果每箱获利润40元,B种糖果每箱获利润50元,其生产过程分为烹调、包装两道工序,下表为每箱糖果生产过程中所需平均时间(单位:机器分钟)
烹调包装利润
A1340
B2250
每种糖果的生产过程中,烹调的设备至多只能用机器20机器小时,包装的设备只能用机器30机器小时,试问每种糖果各生产多少箱可获得最大利润,最大利润为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)={log_2}(4x)•{log_2}(2x),\frac{1}{4}≤x≤4$.
(1)若t=log2x,求y关于t的函数解析式,并写出t的范围;?
(2)求f(x) 的最值,并给出最值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,
 x-10245
f(x)141.541
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,4];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是4,那么t的最大值为4;
④当1<a<4时,函数y=f(x)-a最多有4个零点.
其中正确的命题个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.单位圆上三点A,B,C满足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,则向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为120.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,m),若$\overrightarrow a$∥$\overrightarrow b$,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知变量x,y满足$\left\{\begin{array}{l}0≤x≤y\\ x+y≥2\\ 2x+y≤6\end{array}$,则z=2x-y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案