分析 (1)由an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*),可得2n+1an+1-2nan=2n+3.利用“累加求和方法”即可得出.
(2)由(1)可得:an=$\frac{{n}^{2}}{{2}^{n}}$+$\frac{n-1}{{2}^{n-1}}$.数列{an}的前n项和Sn=($\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$)+($0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$).设An=$0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$,Bn=$\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$.利用“错位相减法”可得An,两次利用“错位相减法”可得Bn.
解答 解:(1)∵an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*),
∴2n+1an+1-2nan=2n+3.
∴2nan=$({2}^{n}{a}_{n}-{2}^{n-1}{a}_{n-1})$+$({2}^{n-1}{a}_{n-1}-{2}^{n-2}{a}_{n-2})$+…+(22a2-2a1)+2a1
=2(n-1)+3+2(n-2)+3+…+2×1+3+1
=$\frac{2×(n-1+1)(n-1)}{2}$+3(n-1)+1=n2+2n-2.
∴an=$\frac{{n}^{2}+2n-2}{{2}^{n}}$.
(2)由(1)可得:an=$\frac{{n}^{2}}{{2}^{n}}$+$\frac{n-1}{{2}^{n-1}}$.
数列{an}的前n项和Sn=($\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$)+($0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$).
设An=$0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$,Bn=$\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$.
①先求An,∵An=$0+\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$,
∴$\frac{1}{2}{A}_{n}$=0+$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-2}{{2}^{n-1}}$+$\frac{n-1}{{2}^{n}}$,
则$\frac{1}{2}$An=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n-1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{n-1}{{2}^{n}}$,可得An=2-$\frac{n+1}{{2}^{n-1}}$.
②∵Bn=$\frac{{1}^{2}}{2}+\frac{{2}^{2}}{{2}^{2}}+\frac{{3}^{2}}{{2}^{3}}$+…+$\frac{{n}^{2}}{{2}^{n}}$,
∴$\frac{1}{2}{B}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{{2}^{2}}{{2}^{3}}$+…+$\frac{(n-1)^{2}}{{2}^{n}}$+$\frac{{n}^{2}}{{2}^{n+1}}$,
$\frac{1}{2}$Bn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$-$\frac{{n}^{2}}{{2}^{n+1}}$,
令Cn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$,
则$\frac{1}{2}{C}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
$\frac{1}{2}{C}_{n}$=$\frac{1}{2}+2(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=$2×\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{1}{2}$-$\frac{2n-1}{{2}^{n+1}}$,
∴Cn=3-$\frac{3+2n}{{2}^{n}}$.
∴$\frac{1}{2}$Bn=3-$\frac{3+2n}{{2}^{n}}$-$\frac{{n}^{2}}{{2}^{n+1}}$,∴Bn=6-$\frac{6+4n+{n}^{2}}{{2}^{n}}$.
∴Sn=6-$\frac{6+4n+{n}^{2}}{{2}^{n}}$+2-$\frac{n+1}{{2}^{n-1}}$=8-$\frac{8+6n+{n}^{2}}{{2}^{n}}$.
点评 本题考查了“累加求和”方法、等比数列的通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | -4 | D. | -8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{75}{2}$ | B. | $\frac{{75\sqrt{3}}}{2}$ | C. | $\frac{{75\sqrt{2}}}{2}$ | D. | $\frac{{75\sqrt{6}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com