精英家教网 > 高中数学 > 题目详情
2.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x    3 4    5    6
 y    2.5 3    4    4.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=bx+a;
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{a=\widehat{y}-b\overline{x}}\end{array}\right.$.

分析 (1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.
(2)根据所给的这组数据求出利用最小二乘法所需要的几个数据,代入求系数b的公式,求得结果,再把样本中心点代入,求出a的值,得到线性回归方程.

解答 解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.

(2)由对照数据,计算得$\sum _{i=1}^{4}$xi2=86,$\sum _{i=1}^{4}$xiyi=66.5,$\overline{x}$=4.5,$\overline{y}$=3.5,
∴回归方程的系数为b=$\frac{\sum _{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}\overline{y}}{\sum _{i=1}^{4}{{x}_{i}}^{2}-4{\overline{x}}^{2}}$=$\frac{66.5-4×4.5×3.5}{86-4×{4.5}^{2}}$=0.7,
a=$\overline{y}$-b$\overline{x}$=3.5-0.7×4.5=0.35,
∴所求线性回归方程为$\hat{y}$=0.7x+0.35

点评 本题考查线性回归方程,两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知x,y的取值如表所示:
x0125
y2446
如果y与x线性相关,且线性回归方程为 y=0.95x+a,则a=(  )
A.2.8B.2.6C.2.1D.3.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=cos2x+sinx-2,x∈($\frac{π}{12}$,$\frac{7π}{6}$]的值域为[-$\frac{7}{4}$,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设离散型随机变量X的概率分布如表:则随机变量X的数学期望为(  )
X0123
Pi$\frac{1}{6}$$\frac{1}{3}$$\frac{1}{6}$p
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知非线性回归方程为y=20.2x-1,则x=50时y的估计值为(  )
A.0B.29C.210D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三棱锥P-ABC的三条侧棱PA,PB,PC两两垂直,三个侧面的面积分别为1、2和4,则三棱锥P-ABC的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),若g(x)=sinπx,则函数y=f(x-2)与y=g(x)图象所有公共点的横坐标之和为(  )
A.10B.12C.20D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式x2-ax+b>0的解集为{x|x<2或x>3},则a+b=11.

查看答案和解析>>

同步练习册答案